Versorgung

Technisches Handbuch | Druckrohre für die Gas und Wasserversorgung

Inhaltsverzeichnis

Verständigung	
Abkürzungen	
Lateinische Buchstaben	6
Griechische Buchstaben	7
Einheiten	
Umrechnung Volumen	8
Umrechnung Druckeinheit	8
Eigenschaften	
Aktuell: Angebotene Druckrohre aus Polyethylen	9
Aufbau	9
Mechanische Eigenschaften	10
Druckstufen	10
Thermische Eigenschaften	11
Elektrische Eigenschaften	11
Allgemeines	
Werkstoffe	12
Polyethylen PE	12
Molekularer Aufbau	12
Masse / Baulängen	12
Kennzeichnung	12
SVGW-Zulassungen	12
Anwendungen	13
Normierung	14
Normen für die Planung und Bauausführung	14
Normen für die Druckrohre aus PE	14
Richtlinien	14
Lebenserwartung	14
Wirtschaftlichkeit	14

Beständigkeit	14
Witterungsbeständigkeit	14
Temperaturbeständigkeit	14
Korrosionsbeständigkeit	15
Chemische Beständigkeit	15
Mechanische Beständigkeit	15
Mikrobiologisches Wachstum	15
Physiologische und toxikologische Eigenschaften	15
Diffusion	15
Ökologie	15
Brandverhalten	15
von Druckrohren Zeitstand Innendruck Verhalten	14
Zeitstand-Innendruck-Verhalten	16
Werkstoffklassifizierung	16
Zeitstand-Innendruck-Diagramm für Polyethylen PE 100	17
Einteilung nach Rohrserien	18
Einteilung nach SDR	18
Dimensionierung von Wasserleitungen	18
Berechnung der Anwendungsspannung	18
Berechnung des zulässigen Innendrucks von Wasserleitungen	18
Zulässige Betriebsdrücke für Wasserrohre	18
Zulässige Betriebsdrücke in Abhängigkeit der Temperatur	19
Innerer Unterdruck, äusserer Überdruck	20
Druckstösse	20

Verschweissung allgemein 2: Einflussgrössen 2: Verschweissbarkeit 2: Heizelementstumpfschweissung 2: Anwendung 2: Einflussgrössen 2: Zu beachten 2: Montage 2: Schweissnahtprüfung 2: Elektroschweisssysteme 2: Anwendung 2: Zu beachten 2: Montage 2: Oberfläche abarbeiten 2: PF Steckmuffe 2: Anwendung 2: Nenndruck 2: Längskraftschlüssigkeit 2: Zu beachten 2: Montage 2: Verschraubung 2: Anwendung 2: Zu beachten 2: Montage 2: Verbindungsbride 2: Anwendung 2: Zu beachten 2: Montage 2: Verbindungsbride 2:	Verbindungstechnik	
Einflussgrössen 2: Verschweissbarkeit 2: Heizelementstumpfschweissung 2: Anwendung 2: Einflussgrössen 2: Zu beachten 2: Montage 2: Schweissnahtprüfung 2: Elektroschweisssysteme 2: Anwendung 2: Einflussgrössen 2: Zu beachten 2: Montage 2: Oberfläche abarbeiten 2: PF Steckmuffe 2: Anwendung 2: Venndruck 2: Längskraftschlüssigkeit 2: Zu beachten 2: Montage 2: Verschraubung 2: Anwendung 2: Zu beachten 2: Montage 2: Verbindungsbride 2: Anwendung 2: Zu beachten 2: Montage 2:	Einleitung	21
Einflussgrössen 2: Verschweissbarkeit 2: Heizelementstumpfschweissung 2: Anwendung 2: Einflussgrössen 2: Zu beachten 2: Montage 2: Schweissnahtprüfung 2: Elektroschweisssysteme 2: Anwendung 2: Einflussgrössen 2: Zu beachten 2: Montage 2: Oberfläche abarbeiten 2: PF Steckmuffe 2: Anwendung 2: Venndruck 2: Längskraftschlüssigkeit 2: Zu beachten 2: Montage 2: Verschraubung 2: Anwendung 2: Zu beachten 2: Montage 2: Verbindungsbride 2: Anwendung 2: Zu beachten 2: Montage 2:	 	
Verschweissbarkeit 2: Heizelementstumpfschweissung 2: Anwendung 2: Einflussgrössen 2: Zu beachten 2: Montage 2: Schweissnahtprüfung 2: Elektroschweisssysteme 2: Anwendung 2: Einflussgrössen 2: Zu beachten 2: Montage 2: Oberfläche abarbeiten 2: PF Steckmuffe 2: Anwendung 2: Nenndruck 2: Längskraftschlüssigkeit 2: Zu beachten 2: Montage 2: Flanschverbindung 2: Anwendung 2: Zu beachten 2: Montage 2: Verschraubung 2: Anwendung 2: Zu beachten 2: Montage 2: Verbindungsbride 2: Anwendung 2: <		21
Heizelementstumpfschweissung		21
Anwendung 22 Einflussgrössen 22 Zu beachten 22 Montage 22 Schweissnahtprüfung 23 Elektroschweisssysteme 22 Anwendung 23 Einflussgrössen 23 Zu beachten 23 Montage 24 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 26 Montage 26 Verschraubung 26 Anwendung 27 Zu beachten 26 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Verbindungsbride 29 Anwendung 29	Verschweissbarkeit	21
Einflussgrössen 23 Zu beachten 23 Montage 25 Schweissnahtprüfung 25 Elektroschweisssysteme 25 Anwendung 25 Einflussgrössen 25 Zu beachten 25 Montage 26 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Verschraubung 27 Anwendung 26 Zu beachten 26 Montage 27 Verbindungsbride 26 Anwendung 27 Zu beachten 26 Montage 29 Verbindungsbride 29 Anwendung 29 Verbindungsbride 29 Anwendung 29 Verbindungsbride 29 Montage	Heizelementstumpfschweissung	22
Zu beachten 23 Montage 23 Schweissnahtprüfung 23 Elektroschweisssysteme 23 Anwendung 23 Einflussgrössen 23 Zu beachten 25 Montage 26 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Verschreindung 27 Anwendung 28 Zu beachten 26 Montage 27 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Anwendung	22
Montage 22 Schweissnahtprüfung 23 Elektroschweisssysteme 23 Anwendung 22 Einflussgrössen 23 Zu beachten 25 Montage 24 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 28 Montage 28 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Einflussgrössen	22
Schweissnahtprüfung 23 Elektroschweisssysteme 23 Anwendung 23 Einflussgrössen 23 Zu beachten 25 Montage 26 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 28 Montage 28 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Zu beachten	22
Elektroschweisssysteme 23 Anwendung 23 Einflussgrössen 23 Zu beachten 23 Montage 24 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 28 Montage 28 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Montage	22
Anwendung 23 Einflussgrössen 23 Zu beachten 23 Montage 24 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 26 Montage 27 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Schweissnahtprüfung	23
Einflussgrössen 23 Zu beachten 23 Montage 24 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 27 Werschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Elektroschweisssysteme	23
Zu beachten 22 Montage 24 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Anwendung 27 Zu beachten 27 Montage 27 Verschraubung 28 Anwendung 29 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 28 Montage 29	Anwendung	23
Montage 24 Oberfläche abarbeiten 25 PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Anwendung 27 Zu beachten 27 Montage 27 Verschraubung 28 Anwendung 29 Anwendung 29 Anwendung 29 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Verbindungsbride 29 Anwendung 29 Anw	Einflussgrössen	23
Oberfläche abarbeiten 29 PF Steckmuffe 29 Anwendung 29 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 27 Werschraubung 28 Anwendung 29 Verschraubung 28 Anwendung 29 Zu beachten 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Zu beachten	23
PF Steckmuffe 25 Anwendung 25 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 27 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Montage	24
Anwendung 29 Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage Flanschverbindung 27 Anwendung 27 Zu beachten 27 Montage 27 Verschraubung 28 Anwendung 28 Anwendung 29 Anwendung 29 Anwendung 29 Anwendung 29 Anwendung 29 Zu beachten 29 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Oberfläche abarbeiten	25
Nenndruck 26 Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 27 Werschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	PF Steckmuffe	25
Längskraftschlüssigkeit 26 Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 27 Montage 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Anwendung	25
Zu beachten 26 Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 27 Montage 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Nenndruck	26
Montage 27 Flanschverbindung 27 Anwendung 27 Zu beachten 27 Werschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Längskraftschlüssigkeit	26
Flanschverbindung 27 Anwendung 27 Zu beachten 27 Montage 28 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Zu beachten	26
Anwendung 27 Zu beachten 27 Montage 27 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Montage	
Anwendung 27 Zu beachten 27 Montage 27 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29 Montage 29	Flanschverbindung	27
Montage 27 Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Anwendung	27
Verschraubung 28 Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Zu beachten	27
Anwendung 28 Zu beachten 28 Montage 29 Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Montage	27
Zu beachten 28 Montage Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Verschraubung	28
Montage Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Anwendung	28
Verbindungsbride 29 Anwendung 29 Zu beachten 29 Montage 29	Zu beachten	28
Anwendung 29 Zu beachten 29 Montage 29	Montage	
Anwendung 29 Zu beachten 29 Montage 29	Verbindungsbride	29
Montage 29		29
		29
Übergänge auf Fremdmaterialien 29	Montage	29
	Übergänge auf Fremdmaterialien	29

Verlegetechnik	
Richtlinien	30
Begriffe	30
Transport und Lagerung	30
	30
Überdeckungshöhe H	30
Grabenbreite SB	30
Rohrumhüllung	31
Anforderungen an das Umhüllungsmaterial	31
Bettungsschicht HU	31
Verdämmung VD	31
Abdeckung HA	31
Schutzschicht HO	31
Verfüllung	31
Verlegung im Schutzrohr	32
Verlegung in Baugruben	32
Hauseinführung	32
Richtungsänderungen	32
Steilleitungen	32
Einmessen der verlegten Rohrleitung	32
Erdung	32
Ortungs- und Warnbänder	32
Temperatureinfluss	33

Freiverlegte Leitungen	33
Einfluss der Temperatur	33
Montage mit Biegeschenkel	33
Starre Montage	34
Rohrschellenabstände	34
Montage der Rohrschellen	36
Isolierte Leitungen	37
Einsatzgebiete	37
Ausführungsvarianten	37
Mediumrohre/Schutzrohre	37
Verbindungen	37
Isolation	37
Übersich Rohrkombinationen/Isolationsstärken	37
Rohrbegleitheizung	38
Ausschreibungstexte	38
Verlegung	38
Dimensionierung	39
Beispiel	39
Druckprüfung von Wasserleitungen	40
Allgemeines zur Druckprüfung	40
Prüfverfahren und Anwendungsbereich	40
Kontraktionsverfahren für Druckrohrleitungen	40
Festlegen des Prüfabschnittes	40
Bestimmung des Systemprüfdruckes STP	40
Abkürzungen	40
Kontrolle der Luftfreiheit	41
Druckabsenkung	41
Wasservolumen während Druckabsenkung	41
Durchführung der Kontraktionsprüfung	42

Hydraulik	
Einleitung	43
Fliessformeln	44
Randbedingungen	44
Materialkennwerte	44
Nomogramme	45
JANSEN Druckrohre Serie 5	45
JANSEN Druckrohre Serie 8	46
Dimensionierung von Gasrohren	
Druckstufen	47
Berechnung der Druckverluste bei Gasleitungen	47
Berechnungsgrundlagen	47
Definitionen	47
Nomogramme	48
JANSEN Gasrohr Serie 5	48
JANSEN Gasrohr Serie 8	49
Lösungsbeispiel	50
· ·	

Verständigung

	Lateinische Buchstaben	
		Einheit
A	Querschnittfläche	mm²; m²
A _R	Rohrringwandfläche	mm²
a, a'	Verdämmungsabstand	m
В	Grabenbreite auf Rohrscheitelhöhe	m
c	Gesamtbetriebskoeffizient (Sicherheitsfaktor)	
CRP	Markenbezeichnung eines PE-Materials	
DN	Nennweite	mm
DN/OD	nom. Durchmesser, aussen kalibriert	mm
DN/ID	nom. Durchmesser, innen kalibriert	mm
D _{Pr}	Verdichtungsgrad nach Proctor	%
DVS	Deutscher Verband für Schweisstechnik	
d	mittlerer Rohrdurchmesser d, - e,	mm
de	Aussendurchmesser, alte Bezeichnung entspricht d	
d _n	Nomineller Aussendurchmesser	mm
d _i	Rohrinnendurchmesser	mm
E _R	Verformungsmodul des Bodens	N/mm²
EN	Europäische Norm	
ENV	Europäische Vornorm	
EPDM	Ethylen-Propylen-Dien-Kautschuk (weiches Dichtungsmaterial)	
E _{R, lang}	Kriechmodul des Rohrmaterials (Langzeit-Elastizitätsmodul)	N/mm²
E _{R, kurz}	Verformungsmodul des Rohrmaterials (Kurzzeit-Elastizitätsmodul)	N/mm²
e _n	nominelle Wanddicke	mm
F _R	Rohrwandfläche im Längsschnitt	mm²
F _T	Längskraft infolge Temperaturunterschied	N
f	Durchbiegung	mm
g	Eigengewicht	N/mm³
g	Erdbeschleunigung (9,81 m/s²)	m/s²
H	Überdeckungshöhe über Rohrscheitel	m
HA	Höhe der Abdeckung	m
H0	Höhe der Schutzschicht	m
HU	Höhe der Bettungsschicht	m

HSM	Heizelementschweissmuffe	
HSS	Heizelementstumpfschweissung	
h_v	Verlusthöhe	mm
I	Trägheitsmoment	mm ⁴
ID	innen kalibrierte Rohre	mm
ISO	International Organization for Standardization	
	Sohlengefälle	
Js In		
Je ———	Energieliniengefälle	
	Wärmegrad Kelvin	K
kN	Kilonewton	kN
kh	Rauigkeitswert	mm
	Radighertswert	
	betrachteter Rohrabschnitt	mm
L _B	Länge Biegeschenkel	mm
L _{RK}	Rohrschellenabstand infolge Knicken	mm
L _{RS}	Rohrschellenabstand infolge Durchbiegung	mm
М	Biegemoment	Nm
MFR	Schmelzindex (Melt Flow Rate)	g/10 Min.
MRS	Minimum Required Strength (Mindestfestigkeit)	N/mm²
NW	Nennweite als kennzeichnendes Merkmal zueinander passender Rohrteile	mm
	aussen kalibrierte Rohre	
OD	aussen kanbrierte Ronie	
	Druckabsenkung	bar
P _{ab}	Polyethylen	
PEHD	Polyethylen hoher Dichte	
PN, pn	nomineller Druck	bar
PP	Polypropylen	- Dui
PP-QD	Polypropylen, verstärkt mit Silikat (Q)	
	in Pulverform (D)	
prEN	provisorische europäische Norm	
<u>p</u>	Auflast	kN/m²
p _{cr}	kritischer Beuldruck	N/mm²
p _{k,zul}	zulässiger Beuldruck	N/mm²
ph	hydrostatischer Druck	N/mm²
p _s	Druckstoss-Amplitude	bar
Q	Abfluss	I/s; m³/s

$\overline{Q_{v}}$	Abfluss bei voller Füllung	m³/s
q q	Auflast als Flächenlast	kN/m²
Rh	hydraulischer Radius	m
S	Serie (Rohreinteilung)	
S	Sicherheitsfaktor	
SB	Sohlenbreite	m
SDR	Standard Dimension Ratio	
SIA	Schweizerischer Ingenieur- und Architektenverein	
SI/VKF	Sicherheitsinstitut / Vereinigung kantonaler Feuerversicherungen	
SN	Schweizer Norm	
SN	Stiffness Number (Ringsteifigkeit)	kN/m²
SNV	Schweizerische Normenvereinigung	
SVGW	Schweizerischer Verein des Gas- und Wasserfaches	
T	Grabentiefe	m
T _v	Verlegetemperatur	°C; K
T ₁	maximale Betriebstemperatur	°C; K
T ₂	minimale Betriebstemperatur	°C; K
TISG	Technisches Inspektorat des Schweizerischen Gasfaches	
U	benetzter Umfang (Hydraulik)	m
U1	Normalverlegeprofile U-Gräben	
U3/U4	Normalverlegeprofile U-Gräben	
UV	Ultraviolett-Strahlung der Sonne	
V1	Normalverlegeprofile V-Gräben	
V3/V4	Normalverlegeprofile V-Gräben	
VD	Höhe der Verdämmung	m
VKR	Verband für Kunststoff-Rohre und Rohrleitungsteile	
VSA	Verband Schweizer Abwasser- und Gewässerschutzfachleute	
V_{min}	minimale Fliessgeschwindigkeit	m/s
V	mittlere Fliessgeschwindigkeit	m/s
V _n	Geschwindigkeit	m/s
W	Widerstandsmoment	mm³
х	Deformation des vertikalen Rohrdurchmessers	
	geometrische Höhe	
Z _n	geometrione rione	

Griect	nische Buchstaben	
		Einheit
α	Längenänderungskoeffizient	mm/m K
β	Böschungswinkel	0
γ	Raumgewicht, Dichte	kN/m³
γ_{R}	Widerstandsbeiwert	
ΔL	Längenänderung	mm
ΔΤ	Temperaturdifferenz	°C; K
ε	Dehnung (Längenänderung pro Längeneinheit)	
λ	Widerstandszahl (Hydraulik)	
μ	Querdehnungszahl	
σ	Spannung	N/mm²
σ_{s}	Berechnungsspannung	N/mm²
σ_{zul}	Berechnungsspannung	N/mm²
	kinematische Zähigkeit	
υ	(Wasser = $1.3 \cdot 10^{-6} \text{ m}^2/\text{s}$)	m²/s
	(Wasser = $1.3 \cdot 10^{-6} \text{ m}^2/\text{s}$)	
Φ	Wärmeverlust	W/m

Einheiten

Umrechnung Volumen

		m³	1 dm³ (1 Liter)	1 cm³	1 mm³	
1 m ³		1	1000	10 ⁶	10°	
1 dm³ (1 Liter)	=	0.001	1	1000	10 ⁶	
1 cm ³	=	10-6	0.001	1	1000	
1 mm³	=	10-5	10-6	0.001	1	

Umrechnung Druckeinheit

		Pa (N/m²)	N/mm² (MPa)	bar	m Wassersäule WS	kN/m²
1Pa	=	1	10-6	10-5	10-4	0.001
1 N/mm ²	=	10 ⁶	1	10	100	1000
1 bar	=	10 ⁵	0.1	1	10	100
1 m WS	=	10'000	0.01	0.1	1	10
1 kN/m²	=	1000	0.001	0.01	0.1	1

Eigenschaften

Aktuell: Angebotene Druckrohre aus Polyethylen

Aufbau

Eigenschaften	JANSEN acqua / gas	JANSEN SafeTech RC	Wavin TS DOQ	Doppelwand- rohre	Isolierte Rohre
Aussehen					
Aufbau	Vollwand PE 100 RC	Zweischicht 90/10 Innenschicht: PE 100 RC (90%) Aussenschicht: PE 100 RC (10%)	Dreischicht Innen- und Aussenschicht: PE 100 RC höchster Qualitätsstufe Mittelschicht: PE 100 RC	Innen Druckrohr und aussen Kanalisationsrohr	Innen Druckrohr und aussen Kanalisationsrohr Zwischenraum mit PUR Schaum ausgefüllt
Farbe	schwarz mit Streifen blau (Wasser) gelb (Gas)	Innenschicht: schwarz Aussenschicht: blau (Wasser) gelb (Gas)	Mittelschicht: schwarz Innen- und Aussenschicht: blau (Wasser) gelb (Gas)	Aussenrohr Innenschicht: schwarz Aussenschicht: schwarz Innenrohr Innenschicht: schwarz Aussenschicht: schwarz	Innen- und Aussenschicht: schwarz
Witterungs- beständig- keit Mittel- europa	> 10 Jahre	> 10 Jahre	> 10 Jahre	> 10 Jahre	> 10 Jahre

Mechanische Eigenschaften

Eigen- schaften	Einheit	JANSEN acqua / gas	JANSEN SafeTech RC	Wavin TS DOQ	Doppelwand- rohre	Isolierte Rohre
Dichte	g/cm³ t/m³	0.96	0.96	0.96	0.96	
Streckspannung	N/mm²	23	23	23		
Streckdehnung	%	9	9	9		
Ringbiege- spannung _{oRb,adm}	N/mm²	8.0	8.0	8.0		
Elastizitätsmodul E ₀ (Kurzzeit)	N/mm²	900 - 1100	900 - 1100	900 - 1100		
Rechenwert E _{R,kurz} für Statik	N/mm²	1000	1000	1000		
Kriechmodul R _{kl} (Langzeit)	N/mm²	200 - 300	150 - 200	200 - 300		
Rechenwert E _{R,lang} für Statik	N/mm²	200	200	200		
Ringsteifigkeit SN Mindestwert	kN/m²	25/90	25/90	25/90		
Querdehnungszahl	[-]	0.40	0.40	0.40		

Druckstufen

Eigenschaften	Einheit	JANSEN acqua / gas	JANSEN SafeTech RC	Wavin TS DOQ	Doppelwand- rohre	Isolierte Rohre			
Druckstufen Fett = Verfügbar Normal = auf Anfrage X = nicht verfügbar									
Serie 8; SDR 17	bar	10	Х	10	10	10			
Serie 5; SDR 11	bar	16	16	16	16	16			
Serie 3.2; SDR 7.4	bar	25	х	Х	25	25			

Thermische Eigenschaften

Eigenschaften	Einheit	Entwässerungsrohre		Druckrohre			
		JANSEN ottimo TF PP-QD	JANSEN nuovo PP-HM	JANSEN bianco PEHD	JANSEN acqua PE 100	Doppelwand- rohre	Isolierte Rohre
Längenänderungs- koeffizient linear	mm/m K	0.04	0.14	0.18	0.18	0.18	0.18
Dauereinsatz- temperatur generell maximal	°C	70	50	40	40	40	40
Kurzzeit-Wärme- beständigkeit max. (spannungsfrei) < 1 h	°C	130	110	90	100	100	100
Kältesprödigkeit	°C	-25	-25	-40	< -40	-40	-40
Brandkennziffer SI/VKF	[-]	IV/3	IV/3	IV/3	IV/3	IV/3	IV/3
Baustoffklasse DN 4102	[-]	B2	B2	B1	B2	B2	B2

Elektrische Eigenschaften

Eigenschaften	Einheit	JANSEN PE 100 RC	JANSEN SafeTech RC	Wavin TS DOQ	Doppelwand- rohre	Isolierte Rohre
Elekrische Leitfähigkeit		nicht leitend	nicht leitend	nicht leitend	nicht leitend	nicht leitend
Oberflächen- widerstand	Ohm	> 1012	> 1012	> 1012	> 1012	> 1012

Allgemeines

Werkstoff

Für die Herstellung von Druckrohrsystemen aus Kunststoff wird Polyethylen, ein thermoplastischer Werkstoff, eingesetzt. Hergestellt werden die Rohre im Extrusionsverfahren. Dabei wird der erwärmte plastische Werkstoff durch ein Formwerkzeug gedrückt, kalibriert und anschliessend durch Abkühlung in seiner Form erstarrt.

Der Vorgang lässt sich ohne Qualitätseinbusse beliebig wiederholen.

Allen verwendeten Kunststoffen gemeinsam ist die gute chemische Beständigkeit. Geringe Abriebwerte und eine glatte Innenfläche ergeben gute hydraulische Eigenschaften und verhindern Ablagerungen.

Und sehr wichtig: Kunststoff kennt keine Korrosion.

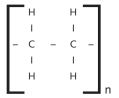
Polyethylen PE / PE RC

Druckrohrsysteme aus PE haben sich langjährig bewährt. Kennzeichnend für PE sind hohe Chemikalienbeständigkeit, geringe Dichte, physiologische Unbedenklichkeit und Flexibilität. Herauszuheben ist die hohe Zähigkeit auch bei Temperaturen weit unter 0°C sowie die gute Verschweissbarkeit.

Ausgehend vom Monomer Ethylen, dem einfachsten Olefin, entsteht durch Polymerisation Polyethylen, ein Polyolefin. Die zunehmende Dichte wirkt sich in der Erhöhung von Zugfestigkeit, Steifigkeit sowie Chemikalienbeständigkeit aus.

Die Entwicklung von Polyethylenwerkstoffen hat mit einer Auslegungsspannung von 10 N/mm² im Hinblick auf die Druckbelastung ihren vorläufigen Abschluss gefunden. Die Weiterentwicklung hat sich auf die Erschliessung neuer Anwendungsgebiete und Verlegeverfahren vertieft. Durch verfahrenstechnische Optimierung bei der Herstellung multimodaler PE Werkstoffe, wurden PE 100 Rohstoffe mit herausragender Spannungsrissbeständigkeit entwickelt. Diese werden mit PE 100 RC (RC = resistance to crack) bezeichnet und sind in der PAS 1075 spezifiziert.

Verwendete Materialqualität:


PE 100 / PE 100 RC

Polyethylen hoher Dichte (PEHD) mit einer Mindestfestigkeit von 10 N/mm²

Die verwendeten Werkstoffe sind:

- UV-stabil
- kälteunempfindlich
- korrosionsfrei
- auf Trinkwassertauglichkeit geprüft

Molekularer Aufbau

C: Kohlenstoff H: Wasserstoff

Polyethylen (PE)

Masse / Baulängen

Kunststoffrohre sind aussen kalibriert, das heisst, dass sich der nominelle Durchmesser $d_{\scriptscriptstyle n}$ auf den Aussendurchmesser bezieht.

Detailmasse siehe Mass- und Preisliste.

Der folgende Abschnitt beschränkt sich auf Standardprodukte. Spezialgrössen und -längen sind auf Anfrage erhältlich. Die Definition von Serie und SDR siehe Dimensionierung.

Kennzeichnung

Die Rohre sind in regelmässigen Abständen mit folgenden Angaben gekennzeichnet:

- 1 = Produktbezeichnung
- 2 = Einsatzbereich (Druck- oder Gasrohr)
- 3 = Werkstoffbezeichnung und Qualität (MRS)
- 4 = evtl. Rohmaterialbezeichnung
- 5 = Dimension
- 6 = Nenndruck
- 7 = Serie und SDR-Wert
- 8 = Normierung
- 9 = SVGW-Zeichen und Zulassungsnummer
- 10 = Produktionsdatum
- 11 = Code für Material und Rückverfolgbarkeit

Abweichende Kennzeichnungen bei Rollendruckrohren sind möglich.

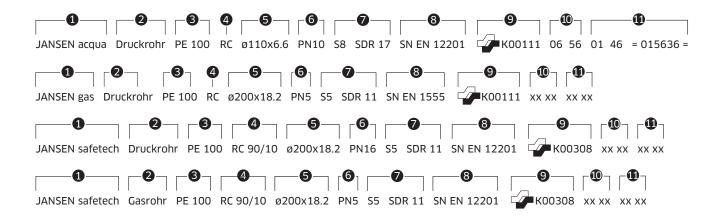
SVGW-Zulassungen

Jansen Rohre sind vom SVGW zugelassen. Die Rohre sind nachweislich physiologisch unbedenklich und verfügen über geprüfte Festigkeitseigenschaften. Die festgelegten Eigenund Fremdüberwachungen sind einem neutralen Prüfinstitut unterstellt.

Für die Zulassung durch den SVGW gilt das folgende Reglement: SVGW GW/TPG-TPW 101: Reglement für die SVGW-Zulassung von Rohren und Rohrleitungsteilen aus Kunststoff für die Verwendung im Gas- und Trinkwasserbereich.

Anwendung

Eigenschaften	JANSEN acqua / gas	JANSEN SafeTech RC	Wavin TS DOQ	Doppelwand- rohre	Isolierte Rohre
Aussehen					
Anwendung	Wasser Gas Abwasser Industrie	Wasser Gas Abwasser Industrie	Wasser Gas Abwasser Industrie	Gewässer- schutzzonen	Brückenleitung wenig Über- deckung Transport warmer Medien
Dimensionen (d _n)	20 - 400 mm	20 - 400 mm	20 - 400 mm	110 - 400 mm 500, 630 mm (auf Anfrage)	110 - 400 mm 500, 630 mm (auf Anfrage)
Verlegeart	Offener Graben Relining	Offener Graben Relining Spülbohrung	Offener Graben Relining Spülbohrung Berstlining	Offener Graben	Offener Graben Aussenbereich mit Aufhängung


JANSEN Druckrohre aus PEHD bewähren sich seit Jahrzehnten im Leitungsbau. Ein ideales Rohr für Druckleitungen im Trinkwasser- und Gasbereich. Das PE Druckrohr kann sowohl erdals auch freiverlegt werden. Ferner können für Spezialanwendungen isolierte Doppelwandrohre eingesetzt werden.

Alternative, grabenlose Verlegeverfahren, wie z.B. Relining, Grabenfräsen und Spülbohrungen, fordern neue Werkstoffe: JANSEN PE 100 RC aus modifiziertem PE weisen einen höheren Widerstand gegenüber langsamem Rissfortschritt und Spannungsrissen auf. Der Vorteil des Werkstoffes PE 100 RC ist, dass Kerben und Riefen am Rohr langfristig keinen Schaden an der Leitung verursachen. Daher findet dieser Werkstoff oft Anwendung bei grabenloser Verlegung oder wenn als Umhüllung gebrochenes Material verwendet wird.

JANSEN Rollendruckrohre (ebenfalls aus PE 100 RC) eignen sich für den Transport von Gas und Wasser bei geringen Durchflussleistungen (wie z.B. für Hauszuleitungen). Sie sind vorteilhaft für lange Strecken und flexibel in unruhigem Terrain. Wenige Verbindungen ermöglichen eine schnelle und günstige Verlegung. Ferner sind Rollendruckrohre ebenfalls geeignet für die grabenlose Verlegung (Relining, Grabenfräsen und Microtunneling).

Weitere Anwendungsgebiete von Druckrohren aus PE:

- Allgemeiner Transport von Flüssigkeiten und Feststoffen
- Industrie (Druckluft, Kühlwasser etc.)
- Entsorgung (Pumpendruckleitungen)
- Landwirtschaft (Bewässerungs- und Jaucheleitungen)
- Lebensmittelindustrie
- Kanalisationen für spezielle Fälle (schlechter Baugrund, grosse Überdeckung, Bodenbewegungen)

Normierung

Europäische Normen werden in das Schweizer Normenwerk integriert.

Die gesamte europäische Normung ist im Gange und so sind Normen in verschiedenen Stadien vorhanden.

SN EN Europäische Norm, die bereits im

Schweizer Normenwerk integriert ist

prEN Europäische Norm im fortgeschrittenen

Entwurfsstadium, ist noch nicht in das Schweizer Normenwerk integriert, sollte aber für eine längerfristige Planung

berücksichtigt werden

Normen für die Planung und Bauausführung

SIA 205 (SN 531 205):

Verlegung von unterirdischen Leitungen

SIA 190 (SN 533 190):

Kanalisationen (massgebend für die Grabengestaltung)

SVGW G2:

Richtlinien für Gasleitungen (Ausgabe April 2001)

SVGW W4:

Richtlinien für den Bau von Trinkwasserleitungen (Ausgabe 2013)

SN EN 805 (SIA 385.011):

Wasserversorgung – Anforderungen an Wasserversorgungssysteme und deren Bauteile ausserhalb von Gebäuden

Normen für Druckrohre aus PE

SN EN 1555

Kunststoffrohrleitungssysteme für die Gasversorgung – Polyethylen (PE)

SN EN 12201

Kunststoffrohrleitungssysteme für die Wasserversorgung – Polyethylen (PE)

PAS 1075

Rohre aus Polyethylen für alternative Verlegetechniken

Diese PAS* legt Eigenschaften, Anforderungen und Prüfverfahren für Rohre aus Polyethylen für alternative Verlegetechniken fest.

* PAS: Publicly Avilable Specification
Dienstleistung des DIN, um die Lücke zwischen der konsensbasierten Normung und Industriestandards zu schliessen.
Erfüllt die Forderungen des Marktes nach einer technischen
Spezifikation, die schnell verfügbar sein soll.

Richtlinien

Massgebend zur Verlegung von Druckrohren, welche zum Transport von Trinkwasser dienen, sind die jeweils gültigen Richtlinien des SVGW (Schweizerischer Verein des Gas- und Wasserfaches).

Für die Verlegung von Kunststoffrohren ist die Richtlinie des VKR (Verband Kunststoffrohre und Rohrleitungsteile) RL 02-03d «Erdverlegte Druckrohrleitungen aus Polyethylen PE 80 und PE 100» massgebend.

Lebenserwartung

Die Bewährung von Kunststoffrohrleitungssystemen hat sich während mehr als 50 Jahren bestätigt. Mit Medium Wasser bei 20°C ist unter Ausnützung des Nenndruckes eine Betriebsdauer von 100 Jahren wissenschaftlich nachgewiesen. Keine Störfaktoren wie Korrosion oder Inkrustationen beeinträchtigen den Einsatz und die Lebensdauer.

Bei Nachprüfungen an Leitungen, die während Jahren im Einsatz waren, und an Prüflingen, die über 50 Jahre wissenschaftlich getestet wurden, lässt sich nachweisen, dass die Eigenschaften – bezogen auf Nutzungsart und dauer – unverändert blieben

Wirtschaftlichkeit

JANSEN Druckrohre aus PE sind wirtschaftlich. Ihr niedriges Gewicht senkt die Transportkosten und erleichtert das Verlegen entscheidend. Die grossen Stangenlängen sowie die Rollenrohre ermöglichen eine einfache und schnelle Verlegung.

Beständigkeit

Witterungsbeständigkeit

Schwarze JANSEN Druckrohre aus PE sind UV-stabil und wenig empfindlich für Witterungseinflüsse. Sie sind daher auch für freiverlegte Leitungen geeignet.

Temperaturbeständigkeit

Generell sollte bei Dauereinsatz die Temperatur des Mediums 40°C nicht überschreiten. Kurzzeitig können höhere Temperaturen toleriert werden. Bei PE bis 1 Stunde max. 100°C. Wie der Ausdruck Thermoplast schon erkennen lässt, hat die Temperatur einen hohen Einfluss auf die Eigenschaften des Werkstoffes. Grundsätzlich basieren alle Berechnungen auf einer Temperatur von 20°C, bei 16 bar ergibt dies eine minimal zu erwartende Einsatzdauer von 50 Jahren. Mit den heutigen Werkstoffen werden diese Erwartungen nachweislich bei Weitem übertroffen.

Werden dauernd höhere Mediumtemperaturen eingesetzt, reduziert sich der zulässige Betriebsdruck.

Korrosionbeständigkeit

Korrosion ist die Werkstoffzerstörung durch chemische oder elektromagnetische Einwirkung. Kunststoffe gehen keine chemischen Reaktionen ein. Die Unempfindlichkeit gegenüber Korrosion gehört zu den herausragenden Eigenschaften von PE. Bei Metallrohren ist Korrosion eine der häufigsten Schadensursachen.

Chemische Beständigkeit

Kunststoffe weisen gegenüber Chemikalien und anderen Medien verschiedenster Art und Zusammensetzung eine ausgezeichnete Beständigkeit auf. Kunststoffrohrleitungen widerstehen auch chemischen Einflüssen in natürlich vorkommenden Böden. Die vollständige Liste der Widerstandsfähigkeit gegenüber Chemikalien und anderen Medien finden Sie unter: jansen.com (Chemische Beständigkeit)

Mechanische Beständigkeit

Abrieb entsteht bei mechanischem Widerstand. Eine positive Eigenschaft von Kunststoff ist, dass mechanischen Beanspruchungen, wie Feststoffen im Medium, kein harter Widerstand entgegengesetzt wird. Sein plastisches Verhalten wirkt dämpfend und reduziert somit das Abriebverhalten. Kunststoffrohre sind auch bei hohen Fliessgeschwindigkeiten praktisch abriebfest

Ablagerungen in Rohren entstehen durch mitgeführte Schwebestoffe und sind stark abhängig von der Fliessgeschwindigkeit und der Strömung. Dank der glatten Oberfläche haften Sedimente schlecht auf dem Kunststoff. Somit bleibt die Durchflussleistung gewährleistet.

Mikrobiologisches Wachstum

Ursache von Biofilmbildung innerhalb von Rohrleitungssystemen ist die Vermehrung von Mikroorganismen, die sich im Wasser befinden. Die benötigte Nahrung sind Mineralien, die sich ebenfalls in ausreichender Menge im Wasser befinden. Lichteinflüsse können in geschlossenen Leitungssystemen ausser Acht gelassen werden. Kleine Rohrdurchmesser, höhere Temperaturen, geringe Wasserbewegungen oder lange Standzeiten begünstigen ein Wachstum. Somit sind die Einflüsse systembedingt aber nicht materialabhängig.

Aus einem Prüfbericht des DVGW über mikrobiologische Untersuchung geht hervor, dass PE aus mikrobiologischer Sicht für den Einsatz im Trinkwasserbereich unbedenklich ist.

Physiologische, toxikologische Eigenschaften

Die Unbedenklichkeit der für Trinkwasser eingesetzten Rohre bzw. deren Rohstoffe sind durch das Bundesamt für Gesundheit (BAG) bestätigt. Die Zulassung durch den SVGW beinhaltet diese Anforderung.

Diffusion

Unter Diffusion und Permeation versteht man die Durchlässigkeit von gasförmigen Stoffen durch feste Stoffe. Die Permeation ist abhängig von der Dichte des Materials. Kunststoffrohre aus PE sind begrenzt diffusionsdicht. Gasverluste durch Permeation sind bei Rohren und Rohrleitungsteilen aus PE 100 ohne Bedeutung, da sie wegen der relativ grossen Wanddicken äusserst gering sind. Gasverluste treten mehrheitlich bei Verbindungen infolge der weichen Dichtungen auf. Da Polyethylenrohrleitungen für die Gasversorgung grundsätzlich durch Schweissen verbunden werden, sind an den Verbindungsstellen keine Gasverluste zu erwarten.

Ökologie

Kunststoffrohre sind ökologisch. PE überzeugt durch geringen Ressourcenverschleiss, positive Ökobilanz und geringes Gewicht. Die Rohre lassen sich zu 100% recyceln. Rohre aus PE sind kein Gefahrengut, haben keine schädliche Wirkung auf die Umwelt, sind chemisch inaktiv und lassen sich schadstoffarm thermisch recyceln.

Brandverhalten

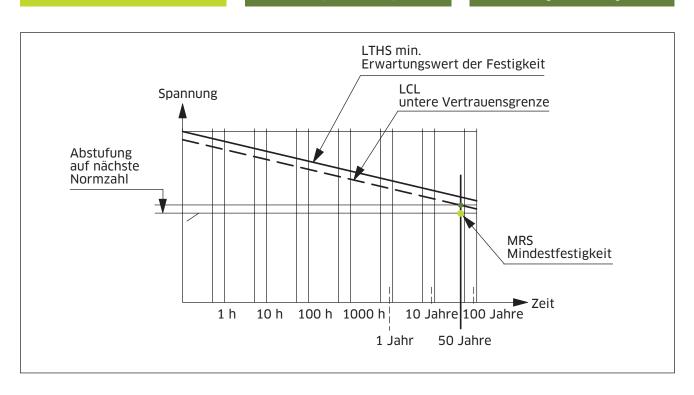
JANSEN PE Druckrohre gelten als mittel brennbar und mittel bis schwach qualmend, Brandkennziffer gemäss SI/VKF 4.3, Brandstoffklasse DIN 4102: IV/3 (entsprechend etwa Holz). PE entzündet sich bei Flammeneinwirkung, brennt mit schwach leuchtender Flamme auch ausserhalb der Zündquelle weiter und tropft brennend ab.

Dimensionierung von Druckrohren

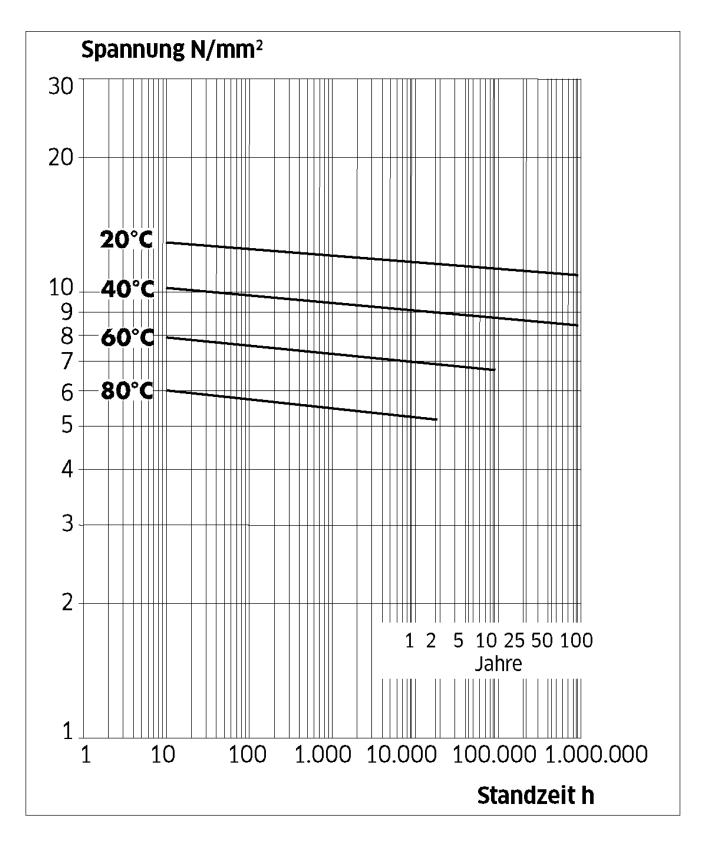
Zeitstand-Innendruck-Verhalten

Die wichtigste Eigenschaft der im Druckbereich eingesetzten Kunststoffe ist das Zeitstand-Innendruck-Verhalten (siehe Diagramm auf der Folgeseite). Darunter versteht man die experimentelle und rechnerische Bestimmung der Lebenserwartung der Rohre und Rohrleitungsteile unter gegenseitig abhängigen Randbedingungen wie Innendruck, Temperatur und Zeit. Entgegen metallischen Werkstoffen ist die zulässige Spannung immer in Abhängigkeit der Zeit zu betrachten. Das Langzeitverhalten der Rohre kann nicht über die gesamte Gebrauchsdauer von mehr als 100 Jahren getestet werden. Durch Erhöhen der Prüftemperaturen kann bei kürzerer Prüfzeit verlässlich Rückschluss auf das Langzeitverhalten bei 20°C gezogen werden.

Werkstoffklassifizierung


PE 100 RC ist als PE 100 klassifiziert. Alle Angaben in diesem Kapitel haben Gültigkeit für PE 100 und PE 100 RC. Die Eigenschaften bezüglich des Zeitstandverhaltens der Druckrohrkunststoffe werden nach einem normierten Klassifizierungssystem unterschieden.

Ausgangspunkt für die Klassifizierung bildet die Ermittlung von Zeitstand-Innendruck-Diagrammen und deren Auswertung nach der Standard-Extrapolationsmethode. Es wird die maximale Spannung bei konstanter Temperatur in Abhängigkeit der Zeit ermittelt.


Der Erwartungswert LTHS (Long Therm Hydrostatic Strength) bildet die theoretische Kurve der ermittelten Prüfwerte. Mit der unteren Vertrauensgrenze LCL (Lower Confidence Limit) werden Reserven geschaffen, damit Streuungen aus den Versuchen abgedeckt werden können (LCL = 97.5% LTHS). Die so ermittelte Spannung bei 50 Jahren (abgerundet auf die nächst niedrige Normzahl) bildet den MRS-Wert (Minimum Required Strength), die materialspezifische Mindestfestigkeit.

Die Werkstoffklassifizierung entspricht dem 10-fachen MRS-Wert MRS = 10 N/mm² Klassifizierungsbezeichnung PE 100

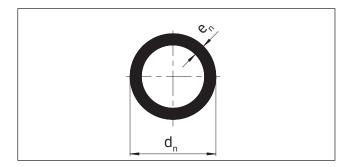
MRS = 8 N/mm² Klassifizierungsbezeichnung PE 80

Zeitstand-Innendruck-Diagramm für Polyethylen PE 100

Einteilung nach Rohrserien

Kunststoffrohre für die Ver- und Entsorgung werden in Rohrserien eingeteilt. Gebräuchlich sind in der Gas- und Wasserversorgung:

PE Serie


S 8, S 5 und S 3.2

Die Definition der Rohrserie S ist ein Verhältnis zwischen Rohrdurchmesser und Wandstärke:

$$S = \frac{d_n - e_n}{2e_n}$$

 d_n = Aussendurchmesser Rohr

 $e_n = Wandstärke$

Einteilung nach SDR

Vermehrt wird auch der SDR-Wert (Standard Dimension Ratio) verwendet. Er ist das direkte Verhältnis zwischen Durchmesser und Wandstärke.

$$SDR = \frac{d_n}{e}$$

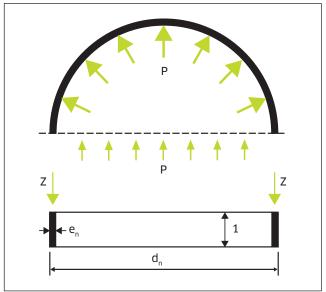
entspricht ca. 2 S +1

Serie 8 = SDR 17 Serie 5 = SDR 11

Serie 3.2 = SDR 7.4

Dimensionierung von Wasserleitungen

Berechnung der Anwendungsspannung


Die zulässigen Belastungen sind nebst dem Wandstärkenverhältnis (S oder SDR) von den zulässigen Werkstoffeigenschaften abhängig. Die für die Dimensionierung erforderliche Berechnungsspannung erhält man durch die Teilung des MRS-Wertes durch den Sicherheitsbeiwert C (Gesamtbetriebskoeffizient).

$$\sigma_{zul} = \frac{MRS}{C}$$

Material	MRS	Sicherheitsbeiwert C (Wasser, 20°C)	Anwendungs-spannung σ_{zul}	
PE 100	10 N/mm²	1.25	8.0 N/mm ²	
PE 80	8 N/mm ²	1.25	6.3 N/mm ²	

Berechnung des zulässigen Innendrucks von Wasserleitungen

Mit der sogenannten Kesselformel kann bei gegebenem Innendruck und den Abmessungen die Spannung in der Rohrwandung berechnet werden.

$$\sigma = \frac{p}{10} \frac{d_n - e_n}{2e_n}$$

 σ = Rohrwandspannung
 N/mm²

 p = Druck
 bar

 e_n = Wanddicke
 mm

 d_n = Aussendurchmesser
 mm

Entsprechend kann mit der Anwendungspannung σ_{zul} gemäss (Berechnung der Anwendungsspannung) und den gegebenen Rohrabmessungen der zulässige Innendruck ermittelt werden.

$$PN = 10 \cdot \sigma_{zul} \frac{2e}{d_n - e_n}$$

oder mit Hilfe der Serie S

PN =
$$10 \cdot \frac{\sigma_{zul}}{\varsigma}$$

Zulässige Betriebsdrücke für Wasserdruckrohre

PN = Zulässiger Innendruck in bar, dem ein Rohr bei 20°C mit Wasser im Minimum 50 Jahre standhalten muss. Mit den heute eingesetzten Werkstoffen ist eine Betriebsdauer von 100 Jahren wissenschaftlich nachgewiesen.

PE 80	Serie S 8	PN = 8 bar
PE 80	Serie S 5	PN = 12.5 bar
PE 80	Serie S 3.2	PN = 16 bar
PE 100	Serie S 8	PN = 10 bar
PE 100	Serie S 5	PN = 16 bar
PE 100	Serie S 3.2	PN = 25 bar

Die zulässigen Innendrücke gemäss DIN 8074 in Abhängigkeit der Temperatur und der Zeit sind auf der nächsten Seite.

Zulässige Betriebsdrücke in Abhängigkeit der Temperatur nach DIN 8074:2011-12

Die folgende Tabelle gilt für JANSEN Druckrohre aus PE 100 für das Medium Wasser, in Abhängigkeit von Temperatur und Betriebsdauer.

Gesamtbetriebskoeffizient C = 1.25

Betriebstemperatur ° C	Betriebsjahre	Berechnungsspannung [N/mm²]	Serie 8 PN 10	Serie 5 PN 16	Serie 3.2 PN 25	
			Zulässiger Be	Zulässiger Betriebsdruck in bar		
10	5	10.1	12.5	19.9	31.6	
	10	9.9	12.3	19.5	30.9	
	25	9.7	12.0	19.1	30.3	
	50	9.5	11.9	18.9	30.0	
	100	9.5	11.7	18.5	29.4	
20	5	8.8	10.5	16.7	26.5	
	10	8.5	10.4	16.5	26.2	
	25	8.3	10.1	16.1	25.6	
	50	8.1	10.0	16.0	25.0	
	100	8.0	9.8	15.5	24.6	
30	5	7.5	8.9	14.1	22.4	
	10	7.2	8.8	13.9	22.1	
	25	7.0	8.6	13.7	21.8	
	50	6.9	8.5	13.5	21.5	
40	5	6.1	7.6	12.1	19.2	
	10	6.0	7.5	11.9	18.9	
	25	5.9	7.4	11.7	18.6	
	50	5.8	7.3	11.5	18.3	
50	5	5.6	6.6	10.5	16.7	
	10	5.4	6.5	10.3	16.4	
	15	5.3	6.5	10.3	16.4	
60	5	4.8	5.6	9.1	14.5	
70	2	3.6	5.2	8.3	13.2	

Innerer Unterdruck: äusserer Überdruck

Bezogen auf das Rohr sind der innere Unterdruck und der äussere Überdruck identisch. Massgebend ist der Beulwiderstand der Leitung. Unterschieden wird zwischen kurzzeitiger Belastung (weniger als 1 Stunde) und langfristiger Belastung.

Innerer Unterdruck

kann entstehen, wenn durch die dynamischen Abflussverhältnisse oder durch schnelles Schliessen von Armaturen eine saugende Wirkung entsteht. Diese Belastungen treten meist kurzfristig auf.

Äusserer Überdruck

entsteht zum Beispiel als langfristige Belastung bei erdverlegten Leitungen durch Grundwasser.

Beuldruckberechnung

Der zulässige Beuldruck errechnet sich folgendermassen:

$$P_{k, zul} = \frac{p_{cr}}{S}$$
 N/mm²

S = Sicherheitsfaktor ≥ 2

p_{cr} = kritischer Beuldruck in N/mm²

$$p_{cr} = \frac{2 \cdot E_R}{1 - \mu^2} \cdot \left(\frac{e_n}{d}\right)^3 \cdot \left(\frac{1 - \frac{X}{d}}{\left(1 + \frac{X}{d}\right)^2}\right)^3$$

 $1 \text{ bar} = 0.1 \text{ N/mm}^2$

= Wanddicke des Rohres	mm
= mittlerer Rohrdurchmesser d _n - e _n	mm
= Deformation des vertikalen	
Rohrdurchmessers	mm
	 mittlerer Rohrdurchmesser d_n - e_n Deformation des vertikalen

E_R	= Verformungsmodul des Rohres	N/mm ²
μ	= Querdehnungszahl Rohrmaterial	[-]

	E _{R,kurz}	$E_{R,lang}$	μ	
PE	1000	150	0.4	

Für Leitungen ohne Vordeformation errechnen sich folgende zulässigen Beuldrücke:

Druckrohrsystem	Zulässiger Beuldruck P _{k,zul} N/mm ²	
	Kurzzeitwert < 1h	Langzeitwert
PE Serie 5	1.20	0.18
PE Serie 8	0.31	0.04

 $P_{k,zul}$ von 0.04 bedeutet, dass für das runde Rohr ein zulässiger Unterdruck von -0.4 bar zulässig ist.

Druckstösse

Druckstösse sind für Polyethylenrohre weitgehend unschädlich, solange die Mittelspannung nicht über der Spannung des maximalen zulässigen Betriebsdrucks liegt. Die Druckamplitude für ein Rohr der Serie S 5 mit einem maximalen Betriebsdruck von 16 bar darf zum Beispiel höchstens 0 bis 32 bar betragen.

Die Grösse der Druckamplitude für Wasser bei 20°C und für Polyethylenrohre errechnet sich mit folgender Gleichung (Ableitung der Joukowsky-Formel):

Ps =
$$\pm \frac{14.49}{\sqrt{1 + \frac{1.25 \cdot (d_n - e_n)}{e_n}}} \cdot V_o$$

Ps	Druckamplitude	[bar]
V _o	Strömungsgeschwindigkeit des Wassers	[m/s]
d_n	Rohraussendurchmesser	[mm]
e_n	Wanddicke des Rohres	[mm]

Verbindungstechnik

Einleitung

Bei der Planung von Rohrleitungssystemen müssen nebst den Anforderungen an den Rohrwerkstoff auch die Verbindungen und die Systemkomponenten geprüft werden. Mit der Verschweissbarkeit von Polyethylen ist sichergestellt, dass die Verbindungen ebenfalls die gestellten Anforderungen an Dichtheit, Langlebigkeit etc. erfüllen.

Situationsbedingte Einflüsse können dazu führen, dass eine andere Verbindungstechnik vorzuziehen ist.

Verschweissung allgemein

Vom Verleger wird eine korrekte und saubere Arbeitsweise verlangt, damit die geforderte Qualität der Verbindung auch erreicht wird. Daher empfiehlt Jansen, die Arbeiten nur durch Verleger ausführen zu lassen, die nachweislich eine entsprechende Ausbildung besitzen und Wiederholungskurse besucht haben (Schweissausweis vom VKR oder SVS). Dieser Ausweis wird in der W4 Kapitel 6.14.1 (Ausgabe 2013) als Pflichtausbildung zur Verschweissung von PE Druckrohren deklariert! Temperatur, Zeit und Druck sind die Einflussgrössen, die bei jeder Verschweissung korrekt eingehalten werden müssen. Das Verschweissen von PE ist praxiserprobt und hat sich bewährt.

Einflussgrössen

Temperatur:

Je nach Verfahren 200 - 260° C

Zu tief: ergibt nur oberflächliche Haftung

Zu hoch: zerstört das Material; Zerfall beim Abkühlen

Zeit für Anwärmung und Schweissung:

Zu kurz: Zu wenig Material, das ineinander

verschmelzen kann. (Kaltschweissung)

Zu lang: Werkstoffzersetzung; zu viel Material

wird aufgeschmolzen

Zeit für Abkühlung:

Zu kurz: Gefahr von plastischer Formänderung

Druck beim Zusammenfügen:

Zu tief: zu wenig tiefes Ineinandergleiten

der Molekülfäden

Zu hoch: plastisches Material wird aus dem Schweissbereich

gepresst

Verschweissbarkeit

Die heute auf dem Markt vorhandenen Werkstoffe PE 80 und 100 lassen sich untereinander problemlos verschweissen. Die Kompatibilität von vorhandenen Systemen ist gewährleistet. Die Verschweissbarkeit wird durch ähnliche Fliessfähigkeiten der Materialien im plastischen Zustand bestimmt.

Ausgedrückt durch den Schmelzindex (MFR: Melt Flow Rate) MFR 190/5: Messung der Durchflussmenge bei 190° C und 5 kg Belastung während 10 Minuten durch eine definierte Düse

Materialien mit einem MFR 190/5 innerhalb 0.2 bis 1.4 g/10 Min. dürfen miteinander verschweisst werden. Bei Anschluss an Rohre älterer Generationen sollte der Schmelzindex überprüft werden. Prüfungen z.B. durch Prüfinstitut oder Hersteller.

Zu beachten:

Wichtige Regeln müssen vom Verarbeiter beachtet werden:

- Sauberkeit
- Witterung
- Sicherstellung Energieversorgung
- Installation Schweissplatz

Heizelementstumpfschweissung (HSS)

Die Heizelementstumpfschweissung ist eine homogene, längskraftschlüssige, nicht lösbare Verbindung zweier PE Rohre. Schweissungen dürfen nur von ausgebildetem Fachpersonal ausgeführt werden. Der VKR (Verband Kunststoffrohre und Rohrleitungsteile) bietet entsprechende Verarbeitungskurse

Anwendung

Gas- und Wasserversorgung

Die Stumpfschweissung wird hauptsächlich bei langen Leitungssträngen oder beim sogenannten Relining eingesetzt. Vom SVGW empfohlen ab d_n 90 mm (SVGW W4).

Es dürfen nur Rohre mit gleicher Wandstärke miteinander verschweisst werden.

Schweissmaschinen sind ab d_n 63 mm bis d_n 1200 mm erhältlich, wobei die Verfügbarkeit ab Durchmesser d_n 280 mm begrenzt ist.

Einflussgrössen

Temperatur:

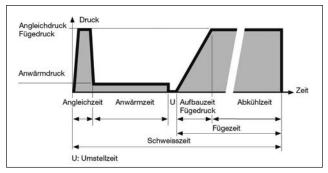
Der Richtwert für die Heizelementtemperatur liegt bei 220° C ($\pm~10^{\circ}$ C).

Zeit:

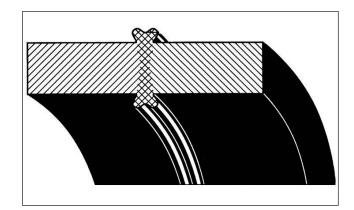
Angaben aus der Schweisstabelle des jeweiligen Schweissgerätehersteller.

Druck:

Fügedruck 0.15 N/mm² (Querschnittfläche Rohr) Anwärmdruck 0.01 – 0.02 N/mm²


Wird durch hydraulischen Druck in der Maschine aufgebaut. Maschinendruck nach Angaben Herstellers.

Zu beachten


- Verleger mit Ausbildung, korrekte saubere Arbeitsweise
- Aussentemperaturen -10° C bis 45° C
- Trockene Aufstellung, windgeschützt, kein Durchzug im Rohr
- Spannungsfreie Verschweissung, kein Bewegungswiderstand durch Leitung
- Zulässiger Versatz max. 10% Wandstärke
- Spalt bis d_n 315 mm: max. 0.5 mm; bis d_n 630 mm: max. 1 mm
- Druckprüfung frühestens 1 Stunde nach Abkühlen der letzten Schweissung

Montage

Ablauf

- Stromversorgung sicherstellen
- Vor Witterungseinflüssen schützen
- Geräte und Zubehör reinigen
- Rohre einspannen und Schweissdruck einstellen (Bild 1)
- Rohrenden planhobeln
- Temperatur Heizelement prüfen
- Schweissfläche mit Papier und Spezialreiniger reinigen
- Angleichen unter Druck bis Wulstbildung (Bild 2)
- Druck reduzieren zum Anwärmen
- Schnell umstellen / Heizelement entfernen
- Zusammenfügen unter Druck
- Abkühlen
- Kontrolle Wulst

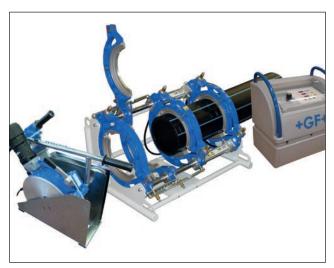


Bild 1

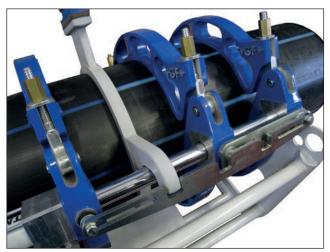


Bild 2

Schweissnahtprüfungen

Nebst der optischen Prüfung der Schweissnaht auf der Baustelle (Form der Schweisswulst nach DVS 2206) sind Prüfungen der Schweissnähte im Labor möglich.

Elektroschweisssysteme (HSM)

Beim Elektroschweissen (Heizwendelschweissen) werden Rohr und Fitting mit Hilfe von Widerstandsdrähten erwärmt und verschweisst. Die Widerstandsdrähte sind auf der Innenseite des Fittings angeordnet. Die Energiezufuhr erfolgt mit Hilfe eines Schweisstransformators. Beim Fitting werden durch die Erwärmung genau bemessene Schrumpfspannungen ausgelöst, welche sicherstellen, dass der zum Schweissen erforderliche Schweissdruck aufgebracht wird.

Anwendung

Gas- und Wasserversorgungen bis d_n 1200 mm. Umfangreiches Formstückprogramm.

Einflussgrössen

Temperatur:

Die Temperatur wird durch das System gesteuert und entsteht durch den Widerstand im stromdurchflossenen legierten Draht (ca. 280°C) innerhalb der Muffe.

Abhängig von Wicklung, Legierung und Dicke erzeugt der Draht die notwendige Wärme.

Zeit:

automatisiert durch das Einlesen der Schweissdaten in das Schweissgerät mittels Strichcode oder Magnetstreifen. Die Zeit wird der Aussentemperatur automatisch angepasst.

Druck:

Quellen des aufgeheizten Materials und Schrumpfen der Muffe erzeugen den benötigten Schweissdruck.

Zu beachten

- Ausreichende Stromversorgung
- Verleger mit Ausbildung, korrekte saubere Arbeitsweise
- Aussentemperaturen -10°C bis 45°C
- Trockener Verbindungsbereich
- Spannungsfreie Verschweissung
- Abkühlzeiten einhalten
- Betriebsdruck und Prüfdruck nach vollständiger Abkühlzeit gemäss Angaben Systemanbieter
- Verbindungsschweissungen bei Gas unter Betrieb nicht erlaubt (Ausnahme Aufschweisssattel)
- Nach Abbruch Schweissvorgang und vollständiger Abkühlung ist nochmaliges Schweissen möglich
- Kontrolle der Schweissung durch mechanische Schweissanzeigen an der Muffe

Montage

Ablauf

Der Ablauf ist je nach Schweissgerät automatisiert. Die automatische Kontrolle des Gerätes überprüft den vorhandenen Widerstand in der Muffe mit dem eingelesenen Wert.

Wichtige Vorbereitungsarbeiten:

- Stromversorgung sicherstellen
- Vor Witterungseinflüssen schützen
- Oberfläche Rohr abarbeiten (schälen)
- Reinigen
- Einstecktiefe anzeichnen
- Zusammenführen und spannungsfrei halten (Bild 1)
- Daten in Schweissgerät einlesen (Bild 2)
- Schweissung starten und überwachen
- Abkühlzeit abwarten

Bild 1

Bild 2

Schweissgeräte

Zur Verschweissung von Elektroschweissmuffen und Anbohrschellen mit Strichcode-Datenerfassung können alle auf dem Markt erhältlichen polyvalenten Schweissgeräte eingesetzt werden.

Für genauere Informationen betreffend den Schweissgeräten wenden Sie sich an den Hersteller.

Schweissvorbereitung

Schweissgerät und Schweissbereich sind vor Nässe und Schmutzeinwirkung zu schützen.

Absicherung des Netzes: 10 A träge oder 10 A normal. Ein Stromaggregat muss so ausgelegt sein, dass eine effektiv nutzbare Leistung von mindestens 3 kVA verfügbar ist. Über 1500 m.ü.M. kann dies unter Umständen nicht genügen. Erkundigen Sie sich bei den Geräteherstellern.

Oberfläche abarbeiten (schälen)

Die UV-Strahlung bewirkt an der PE Oberfläche eine Veränderung der molekularen Struktur. Dadurch wird der Verbindungsmechanismus beim Schweissvorgang eingeschränkt. Daher muss die oberste Schicht (0.1 – 0.2 mm) vor dem Schweissen spanabhebend entfernt werden.

Die Elektroschweissfittings sind durch ihre Verpackung vor UV-Strahlen geschützt. Nach dem Auspacken innerhalb von 1/2 h verarbeiten.

Erforderliche Werkzeuge

Neben dem vorerwähnten Schweissgerät werden Werkzeuge benötigt, die im Kunststoffrohrleitungsbau bekannt und üblich sind. Es sind dies:

- Rotationsschaber zum Bearbeiten der Schweissflächen von Rohren
- Rohrschneider oder feinzahnige Säge
- Weisses, saugfähiges, nichtfaserndes Papier
- Reinigungsmittel, z.B. Tangit-Reiniger oder spezielles Entfettungstuch

Ausserdem werden in Abhängigkeit von der Rohrgrösse und den Verlegebedingungen für die Verarbeitung von Elektroschweissmuffen folgende Haltevorrichtungen benötigt:


- Einstellbare Doppelklemme für PE Rohre (Stangenoder Rollendruckrohre) und Stutzenschweissfittings mit Aussendurchmessern von d_n 20 – 63 mm (Bild 1)
- Kurze Doppelklemme für PE Rohre (nur Stangenrohre)
 und Stutzenschweissfittings mit Aussendurchmessern von d_n 90 225 mm (Bild 2) oder Haltevorrichtung Zweifachausführung für die Dimensionsbereiche d_n 63 125 mm, d_n 110 225 mm und d_n 225 400 mm
- Vierfachklemme für PE Rohre (nur Stangenware) und Stutzenschweissfittings mit Aussendurchmessern von d_n 90 225 mm (Bild 3) oder wie oben, aber Haltevorrichtung Vierfachausführung
- Universelle Haltevorrichtung für mehrere Dimensionen

Die kurze Doppelklemme ist bei beengten Platzverhältnissen an der Schweissstelle zu empfehlen und kann idealerweise auch für die Herstellung von Elektroschweissverbindungen mit Stutzenschweissfittings eingesetzt werden. Sie ermöglicht das Einspannen des Fittings auch bei komplizierten Rohrinstallationen.

Die Vierfachklemme gewährleistet höhere Stabilität und zügige Verlegung bei günstigen Platzverhältnissen. Runddrückklemmen (Bild 4) bringen ovale PE Rohre wieder in die runde Form, positionieren die Muffe und schützen die zu verschweissenden Teile während des Schweissvorganges und der Abkühlzeit vor äusserer Krafteinwirkung.

Es ist zu empfehlen, je Dimension und Baustelle zwei oder drei Haltevorrichtungen sowie die entsprechende Anzahl Runddrückklemmen bereitzuhalten.

PF Steckmuffe

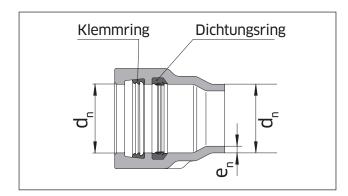
Die längskraftschlüssige PF Steckmuffe vereint die Vorteile einer Steckmuffenverbindung mit der Zugfestigkeit einer Schweissverbindung. Ein in der Muffe integrierter glasfaserverstärkter Klemmring bewirkt durch die konische Führung bei Zugbeanspruchung eine Verkeilung mit dem Rohr. Nach Abschluss dieses Vorgangs erfolgt die Übertragung der Zugkräfte vom Rohr über der Verzahnung des Klemmringes und von diesem auf die Muffe. Es entstehen keine weiteren radialen Krafteinwirkungen auf das eingeschobene Rohr. Es ist kein Stützring im Rohr erforderlich. Ein Nachlassen der Zugfestigkeit der Verbindung durch Kriecherscheinungen des PE ist im Rahmen der garantierten Nenndrücke ausgeschlossen.

Die PF Steckmuffen (System Push-Fast) werden im Spritzgussverfahren hergestellt und mittels Heizelementstumpfschweissung an JANSEN Druckrohre und Formstücke angeschweisst. Das Spitzende der Rohre ist angefast, die Einstecktiefen sind eingezeichnet.

Die Dichtung erfolgt durch einen separaten Dichtungsring aus EPDM.

Anwendung

Nur für die Wasserversorgung. In der Gasversorgung nicht erlaubt.


Die Muffe ist eine Alternative zum Schweissen, wenn ohne Gerätschaft und energieunabhängig verlegt werden muss, z.B. ausserhalb des Baugebietes, aber auch in schlecht zugänglichen Gebieten oder in Bergregionen. Bei witterungsund temperaturunabhängiger Verlegung sowie bei saisonbedingten Baustellen. Oder wenn eine schnelle, etappierte Verlegung gefragt ist. Zum Beispiel innerhalb Strassenbaustellen unter Verkehr (keine Abkühlzeit).

Nenndruck

d _n mm	PN bar
90	16
110	16
125	16
160	16
180	16
225	16
250	16
315	16

Längskraftschlüssigkeit

Die aus den Nenndrücken entstehenden Zugkräfte werden mittels Klemmring aufgenommen und auf das Rohr übertragen.

Zu beachten

Die maximale Auswinkelung des Rohres in der PF Muffe darf maximal 7° nicht übersteigen.

Eine Beschädigung der Rohroberfläche (Kratzer) sowie Schmutz im Bereich des Dichtungsringes können die Qualität beeinflussen.

Wichtige Masse:

d _n	Einsteck- tiefe	Schlupf bis Verkeilung	Minimale Länge der Anschrägung bei Spitzende
mm	mm	mm	mm
90	160	8	7
110	131	17	7
125	143	20	7
160	194	24	14
180	202	25	14
225	225	26	18
250	250	27	20
315			

Montage der PF Steckmuffenverbindung

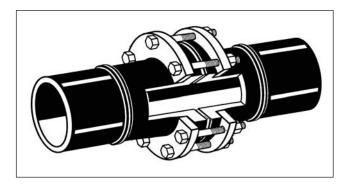
Die PF Muffe, wie auch das Spitzende sind werkseitig durch Schutzkappen vor Verunreinigung geschützt. Diese sind vor der Verlegung zu entfernen.

Ablauf:

- Spitzende 15 30° anschrägen und Einstecktiefe anzeichnen (nur bei bauseits gekürzten Rohren erforderlich).
- Einwandfreien Sitz von Klemm- und Lippendichtring überprüfen (Bild 1).
- Spitzende, Klemm- und Lippendichtring reinigen.
- Spitzende und Lippendichtring mit Jansen Gleitmittel versehen (Bild 2).
- Spitzende bis zur angezeichneten Einstecktiefe einschieben (Bild 3).
- Für PF Muffen $d_n > 180$ mm empfehlen wir eine Zusammenziehhilfe, welche bei uns erhältlich ist.
- Die Verkeilung des Klemmringes ist durch eine Rückwärtsbewegung des eingesteckten Rohres vor der Grabenverfüllung auszulösen.
- Die Verkeilung bei Übergängen auf Armaturen mit Einschweissenden kann nicht garantiert werden.

Kürzen von Leitungen

Das Ablängen der PE Druckleitungen ist mit geeignetem Werkzeug (feinzahnige Säge, Rohrabschneider) zu bewerkstelligen. Das Anschrägen der abgelängten Rohre kann mittels speziellem Anschräggerät oder mit einer Grobfeile ausgeführt werden.



Flanschverbindung

Flanschverbindungen kommen insbesondere beim Übergang auf Absperrorgane oder bei Materialwechsel von PE auf Fremdmaterialien wie z.B. Stahl- oder Gussrohre zum Einsatz.

Anwendung

Gas- und Wasserversorgung

Zur Herstellung einer Flanschverbindung werden 2 Vorschweissbunde, 2 Losflansche (aus PP mit Metalleinlage oder Metallflansch) sowie eine Dichtung und eine bestimmte Anzahl Schrauben (AL) benötigt (siehe nachfolgende Tabelle). Die Vorschweissbunde werden mittels einer Heizelementstumpfschweissung oder durch eine Elektromuffenschweissung mit den glattendigen Rohren verschweisst. Das Aufschweissen der V-Bunde kann werkseitig, oder auf der Baustelle durch den Fachmann erfolgen.

Um Beschädigungen von Flanschen und Vorschweissbunden zu vermeiden, sollten die Schrauben mit einem Drehmomentschlüssel angezogen werden (siehe nachfolgende Tabelle). Die dazu gehörenden Schrauben sind im Fachhandel zu beziehen und gemäss den Herstellervorschriften zu montieren.

Zu beachten

- Spannungsfreie Montage
- Unterschied der Innendurchmesser bei Materialwechsel
- Lochkreisdurchmesser
- Zulässige Druckstufe
- Anziehen der Schrauben gegenseitig mit
 Drehmomentschlüssel gemäss Herstellerangaben
- 3 x nachziehen
- Korrosion der metallischen Bauteile
- Richtige Dichtung mit Zulassung Gas und/oder Wasser verwenden
- Bei Reduzierflanschen Schraubenlänge für Anschlüsse an PE überprüfen

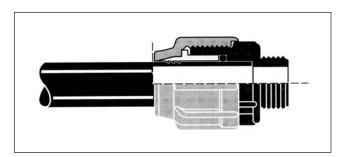
Montage der Flanschverbindung

Nach dem Reinigen der beiden Dichtungsflächen (Bild 1) je eine Schraube mit U-Scheibe unten und seitlich durch die Löcher der Losflansche einführen. Durch eine Mutter mit U-Scheibe sichern. Die gereinigte Flachdichtung zwischen die beiden lose montierten Bunde einsetzen (Bild 2). Sie wird durch die 3 eingesetzten Schrauben zentriert.

Einsetzen der restlichen Schrauben und Muttern inkl. U-Scheiben. Alle Schrauben lose anziehen (übers Kreuz). Kontrolle: Ist die Dichtung noch zentriert?

Anziehen der Schrauben mit einem Drehmomentschlüssel (Bild 3). Erforderliches Drehmoment siehe Tabelle auf der folgenden Seite.

Kontrolle, ob alle Schrauben festgezogen sind.


Losflansche aus PP mit Gusseinlage

							PE-PE	PE-Stahl/Guss
d _n	NW DN	PN max.	Lochkreis	Dreh- moment	Anzahl Löcher	Schrauben- grösse	Schrauben- länge ¹	Schrauben- länge ¹
mm	mm	bar	mm	Nm	Stk.	М	mm	mm
32	25	16	85	10	4	12	70	60
40	32	16	100	20	4	16	80	70
50	40	16	110	25	4	16	90	80
63	50	16	125	30	4	16	100	80
75	65	16	145	35	4	16	100	90
90	80	16	160	40	8	16	100	90
110	100	16	180	45	8	16	110	90
125	100	16	180	45	8	16	120	100
140	125	16	210	50	8	16	130	100
160	150	16	240	60	8	20	140	110
180	150	16	240	70	8	20	140	110
200	200	16	295	75	8 ²	20	160	130
225	200	16	295	75	8 ²	20	160	120
250	250	16	350³	80	12	20	170	140
280	250	16	350³	80	12	20	170	140
315	300	16	400³	90	12	20	180	150
355	350	16	460³	160	16	20	210	170
400	400	16	515³	160	16	24	240	190

¹⁾ Die Schraubenlänge kann je nach Flanschdicke verschieden sein.

Verschraubung

Einfache und schnelle Handhabung. Ohne Montagehilfe und ohne Vorbereitungsarbeiten.

Anwendung

Anwendung in der Gas- und Wasserversorgung. Vornehmlich bei kleinen Durchmessern, z.B. bei Hausanschlüssen oder schnellen Reparaturen.

Schraubverbindungen werden vorwiegend bei PE Rollendruckrohren eingesetzt. Sie können aber auch auf Stangenrohre mit kleinen Durchmessern montiert werden.

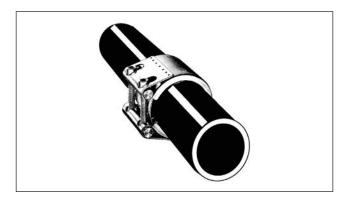
Nebst der einfachen Handhabung sind weitere Vorteile aufzuführen, wie problemloser Übergang von PE auf Stahlleitungen sowie Längskraftschlüssigkeit.

Die Schraubverbindungen sind gemäss den Herstellervorschriften zu montieren.

Zu beachten

Bei Polyethylenrohren sind eventuell Stützhülsen zu verwenden (gemäss Angaben der Hersteller).

Montage


- Rohrenden rechtwinklig zur Achse schneiden
- Einstecktiefe anzeichnen
- Leichtes Anfasen der Rohrenden ist von Vorteil
- Rohrenden und Verschraubung reinigen und mit Gleitmittel versehen
- Rohre bis zum Mittelanschlag einstecken
- Verschraubung von Hand fest anziehen

²⁾ Anzahl Löcher entspricht DIN 2501, PN 10

³⁾ Lochkreis entspricht DIN 2501, PN 10

Verbindungsbride

Einfache und schnelle Handhabung. Ohne Montagehilfe und ohne Vorbereitungsarbeiten.

Anwendung

Anwendung in der Gas- und Wasserversorgung. Vielfach einzige Möglichkeit bei Anschlüssen an glattendige Fremdmaterialien, sofern Aussendurchmesser nicht zu stark abweichen. Kleine Durchmesserdifferenzen können durch die Gummimanschette aufgenommen werden.

Zu beachten

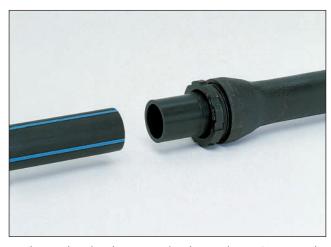
Bei Polyethylenrohren sind eventuell Stützhülsen zu verwenden (gemäss Angaben der Hersteller).

Die Angaben der Hersteller bezüglich Längskraftschlüssigkeit sind zu beachten.

Montage

- Rohrenden rechtwinklig zur Achse schneiden
- Einstecktiefe anzeichnen
- Leichtes Anfasen der Rohrenden ist von Vorteil
- Rohrenden und Verschraubung reinigen und mit Gleitmittel versehen
- Rohre bis zum Mittelanschlag einstecken
- Anziehen der Schrauben in Umfangrichtung

Übergänge auf Fremdmaterialien


Generell kann gesagt werden, dass mittels einer Flanschverbindung von PE auf jedes andere Material gewechselt werden kann (siehe Flanschverbindungen).

Für Anschlüsse an glattendige Fremdmaterialien empfehlen sich Verbindungsbriden (siehe Verbindungsbride).

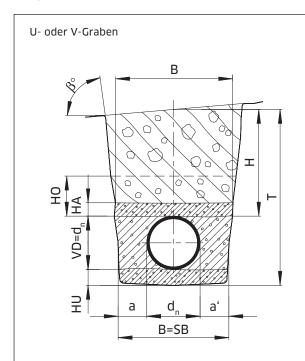
Übergang auf Schraubmuffenguss

Übergang von PE auf Schraubmuffenguss inkl. Konusring

Fertig montiert, bereit zur Verschweissung des PE Stutzens mit dem PE Rohr

Verlegetechnik

Richtlinien


Bei der Verlegung von Wasserleitungen müssen die Richtlinien des SVGW befolgt werden.

Richtlinie SVGW-W4 Richtlinie SVGW-G2

Im Weiteren sind die SIA-Normen sowie die BauAV (Bauarbeitenverordnung) und die entsprechenden SUVA-Vorschriften zu berücksichtigen.

Für die Anwendung von Kunststoffrohren ist die Richtlinie VKR RL 02-03d «Erdverlegte Druckrohrleitungen aus Polyethylen PE 80 und PE 100» zu beachten.

Begriffe

Legende:	
a, a'	Verdämmungsabstände
d_n	Rohraussendurchmesser
SB	Sohlenbreite
В	Grabenbreite
HU	Höhe der Bettungsschicht
VD	Höhe der Verdämmung
HA	Höhe der Abdeckung
НО	Höhe der Schutzschicht
Н	Überdeckungshöhe über Rohrscheitel
T	Grabentiefe
β	Böschungswinkel

Transport und Lagerung

Die Rohre sind mit geeigneten Fahrzeugen zu befördern und fachgerecht auf- und abzuladen. Sie sollen während des Transportes möglichst auf ihrer ganzen Länge aufliegen. Sämtliche Leitungsteile sind so zu lagern, dass sie innen nicht verunreinigt werden und keine unzulässigen Verformungen oder Beschädigungen eintreten.

Das Schleifen der Rohre über den Boden ist zu vermeiden. Riefen und Kratzer dürfen nicht tiefer als 10% der Rohrwanddicke sein.

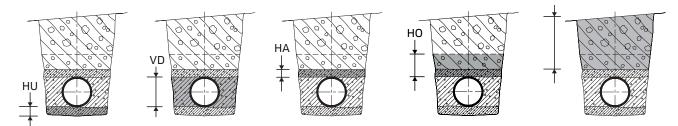
Die maximal zulässige Stapelhöhe bei Druckrohren aus PE beträgt 1 Meter.

Verlegeprofil

Grabenprofile für PE Wasserleitungen haben grundsätzlich das selbe Aussehen wie Grabenprofile für andere Rohrleitungsmaterialien und sind gemäss SIA-Norm 190 zu erstellen.

Überdeckungshöhe H

Der Rohrgraben ist so auszuheben, dass alle Teile der Rohrleitung in frostfreier Tiefe verlegt werden können. Die Überdeckungshöhe soll mindestens 1.0 m betragen. Normalerweise wird eine Überdeckungshöhe von 1.3 m angestrebt.


Grabenbreite SB

Die Mindestgrabenbreite ergibt sich aus den zwei seitlichen Arbeitsräumen (a und a') und dem Rohrdurchmesser. Anforderungen an die Arbeitssicherheit sind gemäss BauAV und SUVA-Richtlinien zu berücksichtigen.

Mindestgrabenbreite in Abhängigkeit der Rohrnennweite gemäss SIA 190

Nennweite der Rohre d _n	Mindestgrabenbreite SB = a + d _n + a'		
	des Rohres	J1/V1 ist beidseits ein begehbarer n erforderlich	
	a in m	a' in m	
≤ 350	0.25	0.25	
> 350 bis ≤ 700	0.35	0.35	
> 700 bis ≤ 1200	0.425	0.425	

Rohrumhüllung

Anforderungen an das Umhüllungsmaterial

Die Rohrzone bis mindestens 0.3 m über dem Scheitel ist von Hand einzufüllen und gut zu verdichten, bis zu einer Proctordichte von 95%. Folgende Verfüllmaterialien können verwendet werden:

- Ungebrochener Betonkies 0 16 mm
- Brechsand bis 6 mm
- Kiesersatzmaterialien

Die Verwendung von Kiesersatzmaterialien, wie zum Beispiel gebrochenes Glas, ist in der Empfehlung SVGW GW 1000 für Kunststoffrohre wie folgt geregelt: «Die Lebensdauer der im Einflussbereich des Ersatzmaterials vorhandenen Rohrleitungen darf im Vergleich zu einer Sand- oder Kiesbettung nicht negativ beeinflusst werden. Die maximale Korngrösse des Glasbruchmaterials darf wegen zunehmender Scharfkantigkeit 5 mm nicht überschreiten. Das gebrochene Glas muss aus kantengerundeten Körnern bestehen. Im Einbettungsbereich soll die maximale Korngrösse 5 mm nicht überschreiten». Bei Verwendung von anderen Materialien werden Rohrschutzmatten oder Schutzrohre eingesetzt.

Bettungsschicht HU

Die Bettungsschicht ist die Unterlage der Leitung, welche die flächenhafte Auflagerung des Rohres und das korrekte Gefälle sicherstellt.

Die Höhe der Bettungsschicht HU beträgt im Minimum:

- 100 mm bei normalen Bodenverhältnissen
- 150 mm bei Fels oder festgelagerten Böden

Im Muffenbereich ist eine entsprechende Vertiefung auszunehmen, damit das Rohr auf der gesamten Länge sauber aufliegen kann.

Falls die Grabensohle eine zu geringe Tragfähigkeit aufweist, können folgende Massnahmen in Betracht gezogen werden:

- Zusätzlicher Bodenaustausch
- Stabilisierung des Bodens
- Holzlage (im Grundwasserbereich imprägnierte, mit Konservierungsmittel behandelte Hölzer verwenden)
- Geotextile, reduzieren ungleichmässige Setzungen

Allfällige Auflager des Rohres wie z.B. Kalksandsteine sind zu entfernen. Auflager aus Holz dürfen nicht unter dem Rohr verbleiben, da die Hölzer durch Wasseraufnahme quellen und zu Eindrücken in den Rohren führen.

Verdämmung VD

Seitliche, verdichtete Auffüllung zwischen Grabenwand und Leitung bis OK Rohr. Die Verdichtung soll mit geeigneten

Werkzeugen oder Geräten ohne maschinellen Einsatz erfolgen. Allfällige Spriessung des Grabens muss gleichzeitig mit der Verdämmung gezogen werden. Bei Kunststoffrohren ist die Qualität der seitlichen Verdichtung wichtig. Darum ist ein lagenweiser Einbau zwingend. Bedingt durch die Platzverhältnisse kann die Verdichtung mit dem Fuss oder dem Handstampfer erfolgen. Dementsprechend ist die Tiefenwirkung der Verdichtung auf ca. 10 – 15 cm begrenzt. Beim Einsatz von Verdichtungsgeräten ist darauf zu achten, dass die verlegte Leitung nicht aus der Lage verschoben wird. Die Verdämmung sollte so ausgeführt werden, dass das Eindringen von Material der Leitungszone in den anstehenden Boden verhindert wird. Unter Umständen kann die Verwendung von Geotextilien erforderlich sein.

Abdeckung HA

Die Materialschicht über dem Rohr wird aus dem selben Material und der selben Qualität wie die Verdämmung ausgeführt.

Der Mindestwert der Abdeckung beträgt über dem Rohr 150 mm und über der Muffe mindestens 100 mm.

Schutzschicht HO

Die Schutzschicht verhindert Beschädigungen des Rohres durch grosse dynamische Kräfte während des Einfüllens und Verdichten des Grabens. Im Bereich der Schutzschicht werden die Materialien von Hand eingebracht.

Die Höhe der Schutzschicht HO richtet sich nach den Verdichtungsgeräten, die zum Einsatz gelangen. Die Mindesthöhe beträgt 30 cm.

Verfüllung

Die Gräben dürfen erst aufgefüllt werden, wenn die Leitung von der Bauleitung kontrolliert worden ist. Die Höhe der Auffüllung über dem Rohrscheitel, in die nur von Hand verdichtet werden darf, richtet sich nach der Schutzschicht.

Das Material für die Auffüllung sowie die Verdichtungsgeräte sind so zu wählen, dass weder an der Rohrleitung noch bei angrenzenden Bauteilen Beschädigungen oder spätere Setzungen eintreten können.

Die Auffüllung und Verdichtung innerhalb des Strassenbereichs muss in gleichmässigen Schichten erfolgen. Verdichtungswerte lassen sich in den Normen SNV 640'585 und SNV 640'588 finden.

Bei Auffüllungen im Kulturland ist die Kulturerde in der ursprünglichen Dicke einzubringen und die Auffüllung, sofern keine Verdichtung vorgeschrieben ist, den erwartenden Setzungen entsprechend zu erhöhen.

Verlegung im Schutzrohr

Als Schutz gegen äussere Einflüsse können die Druckrohre in gewellten Schutzrohren verlegt werden. Dies ermöglicht den Einsatz von gebrochenem Bettungsmaterial.

Beim Schutzrohr ist ein nachträglicher Einzug der Druckrohrleitung möglich. Gewellte Schutzrohre mit Klickmuffen sind in den Farben Blau für Wasser, Gelb für Gas und schwarz mit Streifen bei uns erhältlich.

Verlegung in Baugruben

Müssen Leitungen im Bereich von Baugruben oder instabilem Gelände verlegt werden, ist die Grabensohle vorgängig mechanisch zu verdichten und gegebenenfalls mit Bindemittel zu stabilisieren.

Bei Hauseinführungen ist im Bereich der Baugrube die Leitung mit einem Betonriegel gegen Senkung und Abscherung zu schützen, wenn durch andere Massnahmen ein Absenken der Leitung nicht vermieden werden kann.

Hauseinführung

Ein direktes Einmauern des Kunststoffrohres ist nicht zulässig. Für Hauseinführungen sind spezielle Formstücke zu verwenden. Solche sind zugfest, gas- und wasserdicht einzumauern bzw. mit spezieller Masse zu vergiessen.

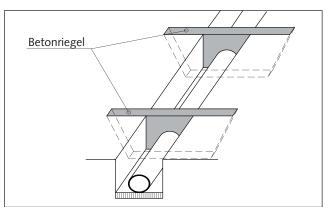
Richtungsänderungen

Für Richtungsänderungen können folgende Elemente verwendet werden:

- gespritzt Formstücke gespritzt
- aus Segmenten zusammengeschweisste Formstücke
- Rohrbogen

Ferner kann das Rohr als solches gebogen werden. Die minimalen Biegeradien sollten dabei nicht unterschritten werden. Die minimalen Biegeradien für dickwandige Druckrohre werden begrenzt durch die Randfaserdehnung, die aus der Summe aller Beanspruchungen 2.5% nicht überschreiten soll. Daher ist der zulässige Biegeradius für dickwandige Rohre von der Rohrserie unabhängig.

Zulässige Biegeradien (mm) für Rohre aus PEHD:


Serie	zulässiger minimaler Biegeradius				
	20° C	10° C	0° C		
8	20 d _n	35 d _n	50 d _n		
5	20 d _n	35 d _n	50 d _n		

Ohne mechanische Hilfen lassen sich die Rohre nicht auf diese engen Radien biegen.

Steilleitungen

Bei starken Gefällstrecken muss durch den Einbau von Betonriegeln das Ausschwemmen des Feinmaterials aus der Rohrumhüllung verhindert werden. Zudem müssen entstehende Längskräfte auf den gewachsenen Boden übertragen werden. Wegen der geringen Haftung des Betons auf dem Kunststoff werden Elektroschweissmuffen aufgeschweisst und als Haltepunkte mit einbetoniert.

Es ist darauf zu achten, dass sich hinter dem Riegel durch abfliessendes Grundwasser kein Wasserdruck aufbauen kann. Eventuell müssen Durchflussmöglichkeiten im Sohlenbereich geschaffen werden.

Einmessen der verlegten Rohrleitung

Bevor die verlegte Leitung zugedeckt wird, ist sie einzumessen und auf den entsprechenden Plan zu übertragen. Darstellungsarten und Beispiele finden Sie in den Richtlinien W4 des SVGW.

Erdung

Weil PE zu den Nichtleitern zählt, müssen Installationen, sofern erforderlich, mit Fundamenterdern gemäss Vorschriften des VSE abgesichert sein.

Die ganze Erdung von Kunststoffrohrleitungssystemen muss mit dem zuständigen Elektrizitätswerk abgesprochen werden. Lösungsmöglichkeiten für die Erdung mit und ohne Benützung des Wasserleitungsnetzes werden in der Norm SN 414'118 (Leitsätze des SEV) umschrieben.

Ortungs- und Warnbänder

Kunststoffrohrleitungen lassen sich mit den heutigen technischen Möglichkeiten problemlos orten. Bei Bedarf können auch Ortungsbänder mitverlegt werden. Sofern ein Warnband mitverlegt wird, sollte dieses mindestens 30 cm über dem Rohrscheitel liegen.

Temperatureinfluss

Temperaturbedingte Längenänderungen sind zu berücksichtigen. Direkte Sonneneinstrahlung auf das Rohr vor dem Überdecken sollte vermieden werden. (Berechnung von Längenausdehnungen siehe freigelegte Leitungen).

Verhalten beim Einfrieren

PE Rohre werden durch die Volumenvergrösserung von gefrorenem Wasser nicht beschädigt. Rohre aus Metall können in solchen Fällen bersten. In Rohrleitungen eingefrorenes Wasser ist mit Sorgfalt aufzutauen (siehe Kapitel: isolierte Leitungen).

Freiverlegte Leitungen

Dank dem guten UV-Schutz und der Verschweissbarkeit ist Polyethylen prädestiniert für den Einsatz von freiverlegten Leitungen.

Einfluss der Temperatur

Bei freiverlegten Leitungen muss auf den Einfluss der Temperatur Rücksicht genommen werden. Entgegen metallischen Werkstoffen ist das Spannungs-Dehnungs-Verhalten von thermoplastischen Kunststoffen stark abhängig von der Temperatur sowie der Geschwindigkeit der Temperaturwechsel. So sind der Längenänderungskoeffizient und der E-Modul über den Temperaturbereich von -20°C bis +60°C nicht konstant. Viskoelastische Werkstoffe haben die Fähigkeit, auftretende Spannungen über die Zeit abzubauen (Relaxation). Entscheidend dabei ist, wie schnell der Temperaturwechsel erfolgt. Dies wird dazu führen, dass die Spannungen bei langsam steigenden Temperaturen nicht unbedingt zunehmen. Unterstützt wird dieses Verhalten durch die Tatsache, dass der E-Modul mit steigenden Temperaturen abnimmt. Beeinflusst wird das thermische Verhalten ebenfalls durch die Innentemperatur des Rohres. Bei relativ konstanter Temperatur des fliessenden Mediums wird der Einfluss der äusseren Temperaturen gedämpft.

Es zeigt sich, dass eine exakte Berechnung der zu erwartenden Längenänderung und Kräfte relativ komplex wird. Die theoretisch errechneten Werte werden in der Praxis normalerweise unterschritten.

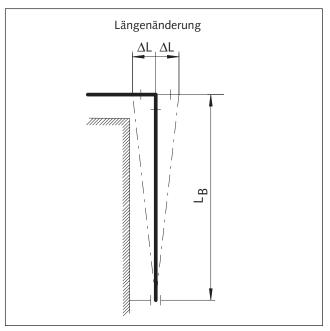
Zu berücksichtigen gilt, dass die Längenänderung sowie die Zug- und Druckkräfte sich immer auf eine Ausgangstemperatur (Montagetemperatur) beziehen.

Die Längenänderung wird nach der folgenden Formel errechnet:

$$\Delta L_n = L \cdot \Delta T \cdot \alpha$$

Hierbei bedeuten:

 α = Längenänderungskoeffizient für PE 100: α = 0.18 mm/m • K


Ist die Betriebstemperatur höher als die Verlegetemperatur, ergibt sich eine Verlängerung der Leitung. Ist sie hingegen niedriger als die Verlegetemperatur, verkürzt sich das Rohr.

Montage mit Biegeschenkel

Durch den niedrigen Elastizitätsmodul von Polyethylen ist die günstige Möglichkeit gegeben, Längenänderungen durch elastische Ausfederungen von dafür vorgesehenen Abschnitten der Rohrleitung aufnehmen zu können.

Die Länge des Biegeschenkels wird im Wesentlichen vom Durchmesser des Rohres und der Grösse der aufzunehmenden Längenänderung bestimmt.

Natürliche Biegeschenkel ergeben sich stets an Richtungsänderungen sowie an Abzweigungen.

Bestimmung der Länge des Biegeschenkels für Rohre aus PE

 $L_{\rm B} = 10\sqrt{d_{\rm n} \cdot \Delta L_{\rm n}}$

L = Länge des Rohrschenkels

d_n = Rohraussendurchmesser in mm

 $\Delta L_n = \text{maximale Längenänderung in mm (+ oder -)}$

Mit dem Diagramm kann die Länge des Biegeschenkels auf einfache Weise bestimmt werden. Zu beachten gilt es den Durchhang innerhalb des Biegeschenkels. Allfällige Auflager mit möglicher seitlicher Verschiebung sind vorzusehen.

Lösungsbeispiel:

Am Beispiel einer Prozessleitung wird die Handhabung erläutert:

 Rohrlänge vom Fixpunkt bis zur Abzweigung, an der die Längenänderung aufgenommen werden soll:

: L = 8 m $d_n = 110 \text{ mm}$

- Rohraussendurchmesser: $d_n = 110 \text{ n}$ - Verlegetemperatur: $T_v = 15^{\circ}\text{C}$ - max. Betriebstemperatur $T_1 = 50^{\circ}\text{C}$ - min. Betriebstemperatur $T_2 = 5^{\circ}\text{C}$ Verlängerung bzw. Verkürzung des Leitungsabschnittes während des Betriebes:

$$\Delta L_1 = L \cdot (T_1 - T_V) \cdot \alpha$$
 = 8 \cdot (50-15) \cdot 0.18 = +50 mm
 $\Delta L_2 = L \cdot T_V - T_2$ \cdot \alpha = 8 \cdot (15-5) \cdot 0.18 = -14 mm

- Verlängerung eines Rohres vorteilhaft mit « + » und Verkürzung mit « - » bezeichnen.
- 2. Für die Bestimmung der Länge des Biegeschenkels ist das grössere Mass der Längenänderung $\Delta L_{\text{max.}}$ massgebend.

Aus dem Diagramm auf Seite35 kann nun mit dem errechneten Wert der max. Ausdehnung sowie mit dem festgelegten Rohraussendurchmesser die Biegeschenkellänge abgelesen werden:

Max. Längenänderung $\Delta L = 50 \, \text{mm}$ Rohraussendurchmesser $d_n = 110 \, \text{mm}$ Biegeschenkellänge (aus Diagramm) $L_p = 750 \, \text{mm}$

Starre Montage

Eine Kunststoffrohrleitung kann auch gezwängt erstellt werden. Das heisst, dass die Längenänderung des Rohres verhindert wird und die so entstehenden Kräfte durch Fixpunkte aufgenommen werden müssen. Der niedrige E-Modul ergibt im Vergleich zu metallischen Werkstoffen geringere Kräfte. Zudem gelten dieselben Gesetzmässigkeiten, sodass die errechneten Kräfte in der Praxis kaum auftreten.

Nachfolgend werden nur die Berechnungen der Längskräfte infolge Temperaturunterschied und Innendruck aufgezeigt. In der Praxis müssen ferner konstruktiv bedingte Kräfte mitberücksichtigt werden.

Längskräfte infolge Temperaturunterschied

Die Längskräfte errechnen sich aus der Temperaturdifferenz und den Rohrdaten. Die entstehenden Längskräfte sind bei starrer Montage von der Leitungslänge unabhängig!

$$F_{\tau} = \sigma \cdot A_{D}$$

F_T = Längskraft, Zug oder Druck

infolge Temperaturunterschied [N]

 σ = Spannung in der Rohrwandung

durch behinderte Längenänderung [N/mm²]

 $A_R = Rohrwandringfläche \frac{\pi}{4} \cdot (d_n^2 - di^2)$ [mm²]

Als Grundlage zur Spannungsberechnung dient das Hooksche Gesetz.

$$\sigma = E_R \cdot \epsilon$$

E_R = E-Modul; um schnelle Temperaturwechsel berücksichtigen zu können, empfiehlt es sich, für PE mit einem Mittelwert von

 $E_{R,mittel} = 500 \text{ N/mm}^2 \text{ zu rechnen}$ [N/mm²]

 ϵ = Dehnung = Längenänderung pro Längeneinheit

 $\varepsilon = \frac{\Delta L}{L}$ [mm/mm][-]

$$\Delta L = \alpha \cdot L^{\dagger} \cdot \Delta T$$

 α = Längenänderungskoeffizient

für PE 100 α = 0.18 [mm/m • K]

L = Betrachteter Rohrabschnitt in [mm] L' = Betrachteter Rohrabschnitt in [m]

ΔT = Temperaturdifferenz ausgehend

von der Verlegetemperatur, je nach dem Druck oder Zug

Längskräfte infolge Innendruck

$$F_{p} = \frac{\pi \cdot d_{i}^{2} \cdot p \cdot \mu}{40}$$
 [N]

di = Rohrinnendurchmesser [mm] p = Innendruck [bar] μ = Querdehnungszahl für PE = 0,4 [-]

Rohrschellenabstände

Rohrschellenabstände infolge Durchbiegung

Massgebend für die Rohrschellenabstände ist die tolerierte Durchbiegung der Leitung. Zu berücksichtigen sind auch eventuelle Auflasten (z.B. Schnee).

Die Berechnung der Rohrschellenabstände beruht auf der Formel für die Durchbiegung eines Durchlaufträgers.

$$f = \frac{q \times L_{RS}^4}{384 E_{RJang}}$$

$$L_{RS} = \sqrt[4]{f \frac{384 \times E_R \times I}{q}}$$

f = Durchbiegung [mm]

 $L_{\rm nc}$ = Rohrschellenabstand [mm]

I = Trägheitsmoment Kreisring [mm⁴]

$$I = \frac{\pi \cdot \left(d_n^4 - d_i^4\right)}{64}$$

 $d_n = Aussendurchmesser Rohr$ [mm]

 d_i = Innendurchmesser Rohr [mm]

E_{R,lang} = E-Modul als Langzeitwert

empfohlene Rechenwerte für PE

bei durchschnittlich 20° C: $E_{R,lang} = 300 \text{ N/mm}^2$

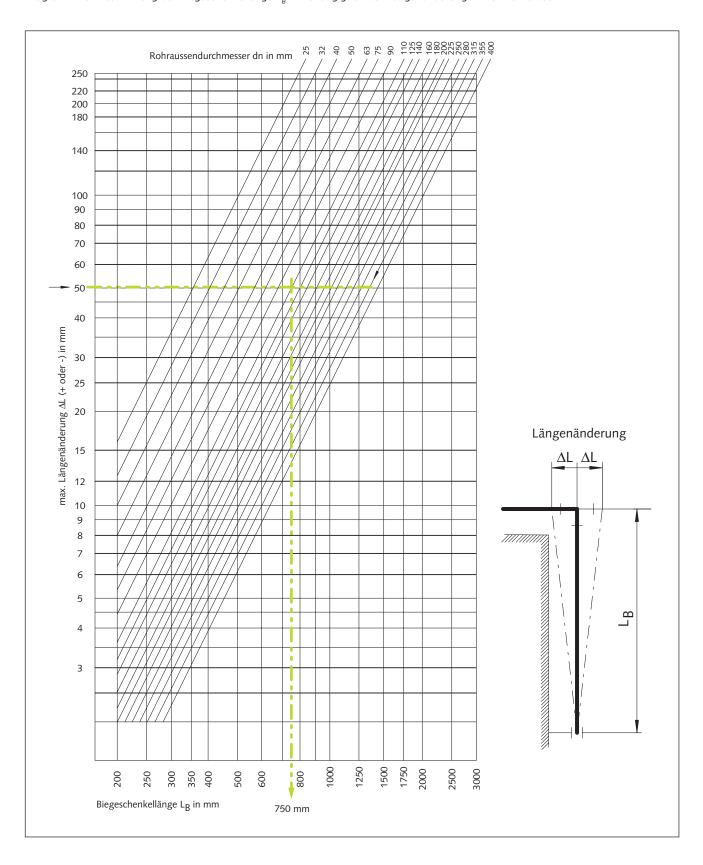
[N/mm']

bei direkter

Sonneneinstrahlung: E_{R,lang} = 200 N/mm²

q = gleichmässige Belastung aus

Eigengewicht und Nutzlast


q = g + p

g = Eigengewicht Rohr siehe Preisliste

Gewicht Rohrfüllung
 zuzüglich allfälliger Auflasten auf der Leitung

 $o = \text{für Wasser: } \frac{d_i^2 \cdot \pi}{4 \cdot 10^5}$ [N/mm²]

Diagramm zur Bestimmung der Biegeschenkellänge $L_{\scriptscriptstyle B}$ in Abhängigkeit der Längenänderung ΔL für Rohre aus PE

Für Wasser können die Rohrschellenabstände aus der folgenden Tabelle abgelesen werden. Die Angaben beziehen sich auf eine zulässige Durchbiegung von 10 mm.

Rohrschellenabstände senkrecht verlaufender Leitungen können gegenüber den Tabellenwerten um ca. 30% erhöht werden. Bei höheren Temperaturen sowie bei kleinen Durchmessern kann eine durchlaufende Unterstützung wirtschaftlicher und vorteilhafter sein als eine Befestigung mit Rohrschellen. Die Verlegung in Tragschalen aus metallischen oder duroplastischen Werkstoffen hat sich dabei bewährt.

Rohrschellenabstände [m] in Abhängigkeit von der Temperatur

d _n	20° C Ausse (300 N/mm	ntemperatur ²)	direkte Son strahlung (2	
mm	S 8	S 5	S 8	S 5
40	1.46	1.58	1.32	1.43
50	1.63	1.77	1.48	1.60
63	1.84	1.99	1.66	1.80
75	2.00	2.17	1.91	1.96
90	2.19	2.37	1.98	2.15
110	2.42	2.63	2.19	2.37
125	2.58	2.80	2.33	2.53
140	2.73	2.96	2.46	2.68
160	2.92	3.17	2.64	2.86
180	3.10	3.36	2.80	3.04
200	3.26	3.54	2.95	3.20
225	3.46	3.76	3.13	3.40
250	3.65	3.96	3.29	3.58
280	3.86	4.19	3.49	3.79
315	4.10	4.45	3.70	4.02
355	4.35	4.72	3.93	4.27
400	4.62	5.01	4.17	4.53

Rohrschellenabstände infolge verhinderter Bewegung Bei starrer Montage und verhinderter Längenausdehnung der Leitung sollten die Rohrschellenabstände auf Knicken untersucht werden.

Folgende Berechnung des zulässigen Rohrschellenabstandes beinhaltet eine Knicksicherheit von 2.0.

$$L_{RK} = \pi \sqrt{\frac{I}{\epsilon \cdot A_R}}$$

L_{pv} = Rohrschellenabstand infolge Knicken

I = Trägheitsmoment Kreisring [mm⁴]

$$I = \frac{\pi \cdot \left(d_n^4 - d_i^4\right)}{64}$$

 ϵ = verhinderte Längendehnung aus

Temperaturdifferenz

$$\epsilon = \alpha \cdot \Delta T$$
 [-]

 α = Längenänderungskoeffizient für PE 100 α = 0.18 mm/m • K

ΔT = Temperaturdifferenz ausgehend von der Verlegetemperatur, je nach dem Druck oder Zug

 $A_R = Rohrringwandfläche$ [mm²]

Montage mit Rohrschellen

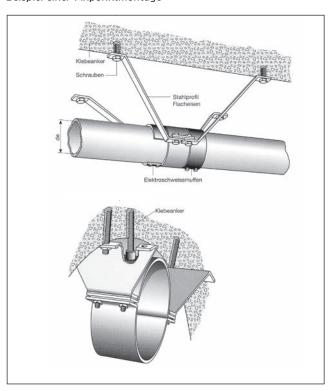
Anforderungen an Rohrschellen

Der Innendurchmesser der Rohrschelle muss im befestigten Zustand grösser sein als der Rohraussendurchmesser, um die Längenänderung der Leitung an den dafür bestimmten Stellen nicht zu behindern.

Die Kanten der Innenseite der Rohrschelle müssen so ausgebildet sein, dass eine Beschädigung der Rohroberfläche nicht möglich ist.

Anordnung von Losschellen

Die axiale Bewegung der Rohrleitung darf nicht durch neben der Rohrschelle angeordnete Fittings oder sonstige Durchmesseränderungen behindert werden.

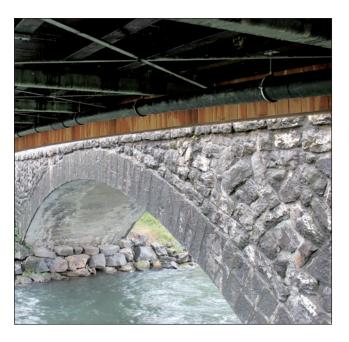

Eine Bewegung der Leitung in mehrere Richtungen wird durch Gleitschellen ermöglicht. Ein am Fuss der Rohrschellen angebrachter Gleitschuh erlaubt auf einer ebenen Unterstützungsfläche beliebige Verschiebungen. Gleit- oder Pendelschellen werden im Bereich von Richtungsänderungen der Leitung notwendig, wenn eine Verschiebbarkeit sichergestellt werden muss.

Anordnung von Fixpunktrohrschellen

Durch die Anordnung der Fixpunktrohrschellen unmittelbar neben einer Heizwendelmuffe (E-Muffe) wird die Längenänderung der Leitung nur auf einer Seite begrenzt. Ist es notwendig, die Längenänderung der Leitung nach beiden Seiten zu begrenzen, empfiehlt es sich, die Rohrschelle zwischen zwei E-Muffen anzuordnen oder als Doppelschelle auszubilden

Damit die aus der Längenänderung der Rohrleitung entstehenden Kräfte aufgenommen werden können, muss die Rohrschelle stabil sein und gut befestigt werden. Pendelschellen sind als Fixpunkte ungeeignet. Die Herstellerangaben sind zu beachten.

Beispiel einer Fixpunktmontage



Isolierte Leitungen

Einsatzgebiete

Isolierte Leitungen werden als Schutz gegen äussere Einflüsse wie Kälte und Wärme eingesetzt.

Sie finden insbesondere im Transport von Wasser und Abwasser in Leitungen an Brücken und Stützmauern oder bei frostgefährdeter Erdverlegung Anwendung.

Ausführungsvarianten

Isolierte Rohrleitungssysteme werden individuell nach Kundenwünschen hergestellt. Dies ermöglicht eine bedürfnisgerechte und wirtschaftliche Lösung.

Mediumrohre / Schutzrohre

Als Mediumrohre werden JANSEN acqua Druckrohre aus PE 100 RC eingesetzt.

Auf Grund ihrer UV-Stabilität werden als Schutzrohre für freiverlegte Leitungen JANSEN bianco Kanalisationsrohre aus PEHD verwendet. Für spezielle Anwendungen können Stahlrohre als tragende Elemente eingesetzt werden.

Verbindungen

Bei Mediumrohren aus PE wird die Elektroschweissverbindung favorisiert. Dadurch ist eine zugfeste Verbindung bei freiverlegten Leitungen gewährleistet. Bei der Verwendung von Elektroschweissmuffen auf dem Schutzrohr gilt es zu berücksichtigen, dass beim Schweissen die Isolation im Zwischenraum durch die Wärmeentwicklung zusammenfällt und sich in diesem Bereich Hohlräume bilden können. Darum empfehlen wir, für die Verbindung der Schutzrohre Überschiebemuffen zu verwenden.

Isolation

Die Isolation besteht aus FCKW-freiem PUR-Schaum (PUR = Polyurethan). Aus produktionstechnischen Gründen beträgt die minimale Stärke der Isolation 18.8 mm.

= übliche Isolationsstärken

Mediumrohr	Schutzrohr	Schutzrohr: JANSEN bianco Kanalisationsrohr aus PEHD, S 16 / *S 12.5							
	d _n 110* d _i 101.6	125* 115.4	160* 147.6	200 187.6	250 234.6	315 295.6	355 333.2	400 375.4	
	24.0	44.7		77.0					
32	34.8	41.7	57.8	77.8					
40	30.8	37.7	53.8	73.8					
50	25.8	32.7	48.8	68.8	92.3				
63		26.2	42.3	62.3	85.8				
75			36.3	56.3	79.8				
90			28.8	48.8	72.3				
110			18.8	38.8	62.3	92.8			
125				31.3	54.8	85.3			
140				23.8	47.3	77.8	96.6		
160					37.3	67.8	86.6		
180					27.3	57.8	76.6	97.7	
200						47.8	66.6	87.7	
225						35.3	54.1	75.2	
250					<u> </u>	22.8	41.6	62.7	
280						·	26.6	47.7	
315								30.2	

Rohrbegleitheizung

Trotz Isolation führen lange Verweilzeiten in der Leitung zu hohen Temperaturverlusten. Um ein Einfrieren der Rohrleitung zu verhindern, kann das Mediumrohr, falls erforderlich, werkseitig mit einer Rohrbegleitheizung ausgestattet werden. Die Anschlüsse und Verbindungen sind durch einen Elektrofachmann auszuführen.

Ausschreibungstexte (Beispiele)

Isolierte Rohrleitung bestehend aus:

Mediumrohr: JANSEN acqua Druckrohr aus PE 100 RC

 d_n 125 mm, S 5, glattendig, in Stangen à 10 m (falls erforderlich: Rohrbegleit-

heizung mit Thermostat)

Verbindung: Elektroschweissmuffe

Schutzrohre: JANSEN bianco Kanalisationsrohr aus PEHD

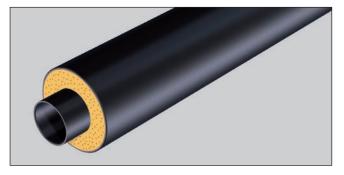
d_n 200 mm, S 16, spitzendig angefast,

in Stangen à 10 m

Verbindung: Überschiebemuffen aus PEHD Zwischenraum: PUR-Schaum (FCKW-frei)

Isolierter Segmentbogen 45° bestehend aus:

Mediumrohr: JANSEN acqua Druckrohr aus PE 100 RC


d_n 125 mm, S 5, glattendig, (falls erforderlich: Rohrbegleitheizung mit Thermostat)

Verbindung: Elektroschweissmuffe

Schutzrohr: JANSEN bianco Kanalisationsrohr aus PEHD

d_n 200 mm, S 16, spitzendig angefast

Verbindung: Überschiebemuffe aus PEHD Zwischenraum: PUR-Schaum (FCKW-frei)

Verlegung

Allgemeines

Die Verlegeprofile isolierter Leitungen sind dieselben, wie bei nicht isolierten Rohren. Die Montage unterscheidet sich jedoch in einigen Punkten:

- Die Überschiebemuffe (ÜM) ist vorgängig auf das Schutzrohr (SR) aufzuschieben.
- Das Mediumrohr (MR) mit der Elektroschweissmuffe verschweissen.
- Bei Verwendung einer Begleitheizung ist deren Verbindung durch einen Fachmann (z.B. Elektriker) auszuführen und zu prüfen.
- Die ÜM über fertig ausgekühlte Verbindung schieben und zentrieren.
- Zur nachträglichen Ausschäumung der Verbindung sind zwei Löcher mit Durchmesser 22 mm durch die ÜM zu hohren
- Den Hohlraum z.B. mit Dosenschaum ausschäumen. Um Lufteinschlüsse zu vermeiden, wird der Schaum nur durch ein Loch eingefüllt.
- Nach vollständiger Expansion des Schaumes, der durch beide Löcher austreten sollte, können diese mit PE Verschlusszapfen verschlossen werden.

Aufhängungen

Bei isolierten Leitungen wirkt der Verbund aus Schutzrohr, Mediumrohr und Isolation versteifend, sodass die maximalen Rohrschellenabstände gegenüber den Diagrammwerten theoretisch erhöht werden können.

Ausdehnung

Die Temperatur des fliessenden Mediums und somit des Mediumrohres bleibt meistens konstant. Durch den Verbund von Mediumrohr, Isolation und Schutzrohr ergeben sich gegenüber einem einfachen Kunststoffrohr reduzierte Längenänderungen.

Das Mediumrohr wird verschweisst. Die gesamte Längenausdehnung muss an den Auflager- oder Fixpunkten aufgenommen werden

Die Schutzrohre dehnen sich unabhängig voneinander aus und können in den Überschiebemuffen dilatieren. Durch geeignete Anordnung der Rohrschellen wird ein Verschieben der Überschiebemuffen verhindert.

Richtungsänderungen

Der Verbund aus Mediumrohr, Isolation und Schutzrohr ist sehr starr. Dadurch ist eine mögliche Biegung der Rohre schwer abzuschätzen. Durch das Biegen der Rohre dürfen keine Auswinkelungen und Spannungen in den Verbindungen entstehen.

Bogen können analog den Stangenrohren in isolierter Ausführung hergestellt werden.

Dimensionierung

Der Wärmeverluststrom durch die Isolierung kann nach folgender Formel berechnet werden. Der Einfluss der Rohrwandungen wird nicht berücksichtigt. Bei längeren Standzeiten des Wassers kann das Einfrieren auch mit einer dicken Isolation längerfristig nicht verhindert werden. In diesem Fall empfiehlt es sich, eine Begleitheizung oder ein Stetslauf (permanenter minimaler Durchfluss) vorzusehen, um die Aufenthaltsdauer in der Leitung zu begrenzen.

$$\Phi = \frac{\pi \left(t_1 - t_2\right)}{\frac{1}{2\lambda} ln \left(\frac{d_{i_2}}{d_{n_1}}\right) + \frac{1}{\alpha_a d_{i_2}}}$$
 [W/m']

 $\begin{array}{lll} t_1 & & \text{Temperatur des Mediums im Rohr} & [\text{K}] \\ t_2 & & \text{Temperatur der äusseren Umgebung} & [\text{K}] \\ \lambda & & \text{Wärmeleitfähigkeit des Isolierstoffes} & [\text{W/mK}] \\ \lambda = 0,03 \text{ W/mK für PUR-Schaum} \\ \alpha_{\text{a}} & & \text{Wärmeübergangskoeffizient} \end{array}$

 $\begin{array}{ccc} & \text{aussen am Rohr (gemäss Tabelle 1)} & & [\text{W/m}^2\text{K}] \\ d_{n_1} & & \text{Aussendurchmesser Mediumrohr} & & [\text{m}] \\ d_{n_2} & & & \text{Innendurchmesser Schutzrohr} & & [\text{m}] \end{array}$

Der Temperaturverlust Δt ergibt sich aus dem Massenstrom V, dem Wärmeverluststrom Φ und der spezifischen Wärmekapazität cp des Mediums.

$$\Delta t = \frac{\Phi}{cp \cdot v}$$
 [K/m]
 Φ Wärmeverluststrom [W/m]
 cp spezifische Wärmekapazität Medium,

für Wasser: cp = 4128 [J/kgK] Massenstrom = Wassermenge Q [kg/s]

Der totale Temperaturverlust ΔT kann aus Δt und der Länge I der Leitung berechnet werden.

$$\Delta T = \Delta t \cdot I$$
 [K] I = Länge der Leitung [m]

Beispiel

Isolierte Leitung bestehend aus:

Mediumrohr: JANSEN acqua Druckrohr aus PE 100

d_n 200 mm, S 5

Schutzrohr: JANSEN bianco Kanalisationsrohr aus PE

d_n 315 mm, S 16

Leitungslänge: I = 200 m Wassermenge: Q = 0.5 l/s Massenstrom: V = 0.5 kg/s Temperatur: Medium t_1 = 7° C

Temperatur: äussere Umgebung $t_2 = -20^{\circ}$ C

$$\Phi = \frac{\pi(t_1 - t_2)}{\frac{1}{2\lambda} ln(\frac{d_{i_2}}{d_{n_1}}) + \frac{1}{\alpha_a d_{i_2}}}$$
 [W/m']

$$= \frac{\pi(7--20)}{\frac{1}{2\cdot 0.03} \ln\left(\frac{0.2956}{0.200}\right) + \frac{1}{25.5\cdot 0.2956}} = 12.77 \text{ W/m}$$

$$\Delta T = \frac{\Phi}{\text{cp} \cdot \text{v}} = \frac{12.77 \text{W/m}}{4128 \text{ J/kgK} \cdot 0.5 \text{ kg/s}} = 0.006 \text{ K/m}$$

$$\Delta T = \Delta T \cdot I = 0.006 \text{ K/m} \cdot 200 \text{ m} = 1.2 \text{ K} = 1.2^{\circ} \text{ C}$$

Endtemperatur
$$t_1$$
 - $\Delta T = 7^{\circ} C - 1.2^{\circ} C = 5.8^{\circ} C$

Die gewählte Isolationsstärke ist genügend. Bei den angenommenen Randbedingungen ist nicht mit einem Einfrieren des Mediums zu rechnen.

Tabelle 1: Der Wärmeübergangskoeffizient α_n in Abhängigkeit von Windgeschwindigkeit und Druchmesser (W/m²K)

Windstärke		Aussendurc	Aussendurchmesser Schutzrohr in mm					
Beaufortskala	m/s	100	150	200	300	500		
1 leiser Zug	0.6 - 1.7	15.3	13.7	12.8	11.6	10.6		
3 schwach	3.4 - 5.2	34.2	30.6	28.3	25.5	22.3		
7 steif	12.5 - 15.3	68.4	60.9	55.1	48.3	42.9		
11 schwerer Sturm	25.2 - 29.0	96.3	83.5	77.7	68.4	60.9		

Druckprüfung von Wasserleitungen

Allgemeines zur Druckprüfung

Jede Trinkwasserleitung ist einer Druckprüfung zu unterziehen, um die Dichtheit bzw. ordnungsgemässe Ausführung und den Einbau der Rohre und Rohrleitungsteile sicherzustellen. Die Druckprüfung dient dazu, die Festigkeit und die Dichtheit des gesamten Rohrleitungssystems festzustellen und zu dokumentieren. Auf Grund dieser Prüfung wird ein Protokoll erstellt, das der Abnahme des Objektes dient. Die Druckprüfung ist keine umfassende Verbindungs- bzw. Schweissnahtprüfung. Sie kann eine sorgfältige, kontrollierte Materialwahl und -verarbeitung nur ergänzen.

Ergänzende Angaben sind der aktuell gültigen Richtlinie W4 zu entnehmen

Prüfverfahren und Anwendungsbereich

Es stehen drei grundlegende Prüfmethoden zur Verfügung:

- Druckverlustmethode
- Wasserverlustmethode
- Sichtprüfung unter Betriebsdruck (z.B. bei Reparaturen)

Bei der Druckverlust- und der Wasserverlustmethode kommen für neu verlegte PE Wasserleitungen in der Regel folgende Verfahren zur Anwendung:

- das Kontraktionsverfahren für Rohrleitungen aus PE bis Nennweite d_n 400 und Volumen bis 20 m³
- das Normalverfahren für alle Nennweiten

Im Folgenden wird nur auf das üblicherweise sinnvolle Kontraktionsverfahren eingegangen.

Kontraktionsverfahren für Druckrohrleitungen aus PE

Das Kontraktionsverfahren ist ein schnelles und sicheres Prüfverfahren zur Innendruckprüfung von Druckrohren aus Polyethylen bis Nennweite $\rm d_n$ 400 und einem Leitungsvolumen bis 20 m³.

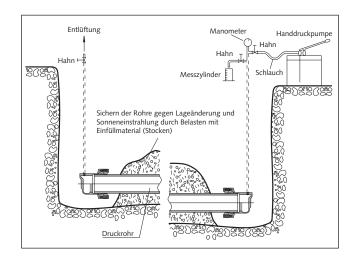
Für Rohrleitungen aus PE 100 SDR 17 sowie für Leitungen mit grossem Volumen ≥ 20 m³ wird die Anwendung des Normalverfahrens empfohlen. Bei grösseren Volumen ist die Wassermenge zum Hochpumpen dieser Leitungen auf den Prüfdruck innerhalb von 10 Minuten sowie auch zum raschen Ablassen des Drucks zur Einleitung der Kontraktion zu gross.

Festlegen des Prüfabschnittes

Die Druckprüfung ist grundsätzlich mit einem höheren Druck als dem höchsten Systembetriebsdruck MDP durchzuführen. Für Versorgungsnetze ist von einem MDP nicht unter 10 bar auszugehen. Für alle Rohrleitungen ist der Systemprüfdruck STP zu bestimmen. Dieser ist an der tiefsten Stelle zu messen. Bei Höhendifferenzen von mehr als 40 m ist die Leitung in mehreren Teilabschnitten zu prüfen.

Bestimmung des Systemprüfdruckes STP					
Am höchsten Punkt des Prüfabschnittes	STP min. 1.1 x MDP				
Bei eingerechnetem Druckstoss	$STP = MDP_c + 1 bar$				
Bei nicht berechnetem Druckstoss (Kleinerer Wert ist massgebend)	MDP _a min. DP + 2 bar STP = MDP _a x 1.5 / STP = MDP _a + 5 bar				
Rohrleitungen aus PE 100 SDR 17 Rohrleitungen aus PE 100 SDR 11	max. 12 bar max. 21 bar				

Abkürzungen:


zul

zulässig

DP	Systembetriebsdruck (Netzdruck)
MDP	Höchster Systembetriebsdruck (inkl. Druckstoss)
STP	Systemprüfdruck
a	angenommen
С	berechnet
g	gemessen
ab	abgesenkt (Druck), abgelassen (Wasser)

Bei der Vorbereitung sind folgende Punkte zu beachten:

- Die Rohrleitung vor direkter Sonnenbestrahlung schützen; Rohrwandtemperatur max. 20°C
- Rohre gegen Lageveränderung schützen (z.B. Umhüllungsmaterial einbringen)
- Verbindungsstellen der zu pr
 üfenden Leitung gut zugänglich halten
- Absperrarmaturen müssen wasser- und luftdicht sein!

Kontrolle der Luftfreiheit

Der Druckrohrleitung wird ein Wasservolumen entnommen, das einer Druckabsenkung von 1 bis 3 bar entspricht. Das Wasservolumen ΔV_g und der entstehende Druckabfall Δp_g werden gemessen. Die sich aus dem gemessenen Druckabfall Δp_g theoretisch ergebende Volumenänderung ΔV_{zul} bei Luftfreiheit wird mit der tatsächlich gemessenen Wassermenge ΔV_g verglichen.

Eine Leitung ist ausreichend luftfrei, wenn:

 $\Delta V_g \leq \Delta V_{zul}$

 $\Delta V_{\rm g}$ $\;\;$ gemessenes Wasservolumen in ml

 ΔV_{zul} maximal zulässiges Wasservolumen in ml

Druckabsenkung Δp _g							
PE 80	S 5, SDR 11	2.2 bar					
PE 80	S 3.2, SDR 7.4	3.6 bar					
PE 100	S 8, SDR 17	2.0 bar					
PE 100	S 5, SDR 11	3.2 bar					

Berechnung des zulässigen Wasservolumens V_{zul}

$$\Delta V_{\text{zul}} = 0.1 \cdot f \cdot \frac{\pi \cdot d_i^2 \cdot L}{4} \cdot \Delta p_g \cdot \left(\frac{1}{K_W} + \frac{d_i}{E_R \cdot e} \right)$$

 $\Delta V_{zul} \leq V_k \cdot L$ (V_k siehe Tabelle unten)

f Ausgleichsfaktor für unvermeidliche Luftreste (f = 1.05)

d_i Rohrinnendurchmesser in mm

L Länge des Prüfabschnittes in m

 Δp_{g} gemessene Druckabsenkung in bar

K_w Kompressionsmodul von Wasser = 2027 N/mm²

E_R Elastizitätsmodul PE (gemäss Definition SVGW W4) 80 = 800 N/mm² / PE 100 = 1200 N/mm²

Rohrwandstärke in mm

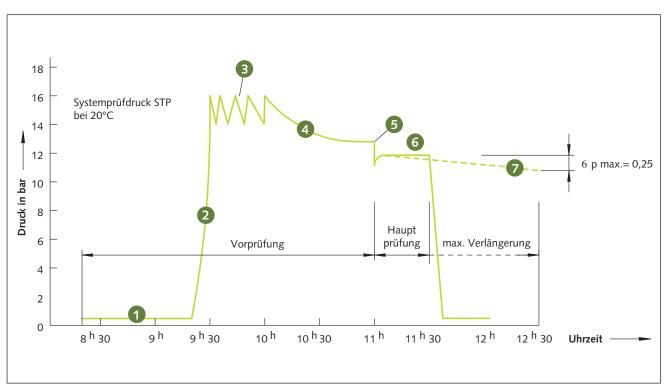
е

 $e = (e_n + e_n * 0.1 + 0.2) * 0.5$

(Korrekturfaktor für Toleranzwerte der Wanddicken)

Maximal zulässiges Wasservolumen V_k in ml pro Meter Leitungslänge während der Druckabsenkung

OD / d _n	PE 80 (S 5 / SDR 11)	PE 80 (S 3.2 / SDR 7.4)	PE 100 (S 8 / SDR 17)	PE 100 (S 5 / SDR 11)
32	1.29	0.98		1.28
40	1.96	1.54		1.95
50	3.12	2.41		3.10
63	4.98	3.94		4.95
75	7.28	5.53	8.30	7.22
90	10.43	8.07	12.01	10.35
110	15.70	11.98	18.02	15.57
125	20.20	15.61	23.76	20.04
140	25.60	19.50	29.81	25.38
160	33.17	25.61	38.93	32.90
180	42.13	32.55	49.26	41.79
200	52.17	40.01	60.81	51.74
225	65.96	50.77	76.96	65.41
250	81.95	62.80	95.90	81.27
280	103.04	78.85	120.17	102.17
315	130.31	99.79	151.94	129.22
355	165.88	127.21	192.81	164.48
400	210.54	161.25	246.02	208.76

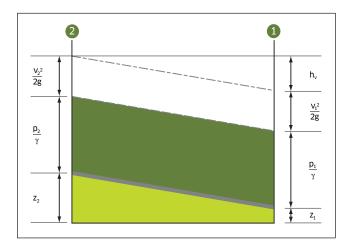

Durchführung der Kontraktionsprüfung

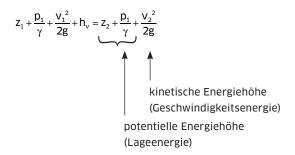
- Entspannungsphase
 Nach dem Befüllen und Entlüften der Wasserleitung
 ist der Prüfabschnitt während 60 Minuten drucklos zu
 halten. Die Rohrtemperatur darf während des ganzen
 Prüfungsverlaufes nicht mehr als 20°C betragen.
- Druckaufbau Den Systemprüfdruck STP innerhalb von 10 Minuten aufbauen, bei längeren Leitungsabschnitten notfalls mit einer Motorpumpe.
- Druckhaltephase
 Der Systemprüfdruck STP wird während 30 Minuten
 durch stetes Nachpumpen gehalten.
- Ruhephase
 Anschliessend folgt eine einstündige Ruhephase. In
 dieser Zeit verformt sich die Leitung viskoelastisch.
 Innerhalb 60 Minuten darf der STP max. 20% absinken.
 Anmerkung: Zu grosser Druckabfall deutet auf eine
 Undichtheit oder auf eine unzulässige Rohrwandtemperatur hin. Falls dies zutrifft, ist die Prüfung zu
 wiederholen.

Druckabsenkung / Druckabfallprüfung (Entlüftungskontrolle)

Zur Unterbrechung der weiteren viskoelastischen Dehnung der Leitung wird der Druck innerhalb von max. 2 Minuten abgesenkt. Die sich aus dem gemessenen Druckabfall theoretisch ergebende Volumenänderung bei Luftfreiheit wird mit der tatsächlich gemessenen Wassermenge ΔV_g verglichen. Eine Leitung ist ausreichend luftfrei, wenn die gemessene abgelassene Wassermenge kleiner ist als das berechnete maximal zulässige Wasservolumen ΔV_{zul}

- 6 Hauptprüfung
 Die Leitung gilt als dicht, wenn im Verlauf der
 30-minütigen Kontraktion die Drucklinie eine
 steigende bis gleichbleibende Tendenz aufweist.
- Verlängerte Hauptprüfung
 In Zweifelsfällen kann die Prüfung um 1 Stunde auf
 1½ Stunden verlängert werden. Dabei darf der Druckabfall nicht mehr als 0.25 bar vom höchsten, erreichten
 Wert nach der Druckabsenkung betragen.
 Die Ergebnisse des Prüfungsverlaufes sollten ständig
 aufgezeichnet und protokolliert werden.


Protokoll siehe www.vkr.ch


Hydraulik

Einleitung

Im Folgenden wird die Berechnung des Durchflussvermögens und der Fliessgeschwindigkeit in Kunststoffrohren bei voller Füllung erklärt.

Grundlage der Strömungsberechnungen bildet die Formel von Bernoulli.

z₁ = geometrische Höhe bei Punkt 1 z₂ = geometrische Höhe bei Punkt 2

p, = Druck bei Punkt 1

p₃ = Druck bei Punkt 2

γ = Dichte des Mediums

v₁ = Geschwindigkeit bei Punkt 1

v₂ = Geschwindigkeit bei Punkt 2

g = Erdbeschleunigung

h_v = Verlusthöhe

Von Bedeutung wird darin die Ermittlung der Verlusthöhe h.,.

Die Verlusthöhe kann verschiedene Ursachen haben, z.B. Reibung, Krümmung, Querschnittsänderungen etc. Beim Betrachten einer einzelnen Leitung mit konstantem Querschnitt wird die Rohrreibung massgebend. Die allgemeine Formel für die Berechnung der Reibungsverlusthöhe in geraden volllaufenden Kreisrohren lautet:

$$h_v = \lambda \cdot \frac{{v_2}^2}{2g} \cdot \frac{1}{d_i}$$

Die Widerstandszahl Lambda (λ) ist abhängig von der Strömungsart des fliessenden Mediums, die laminar oder turbulent sein kann. Ein Kriterium hierfür bildet die Reynoldszahl.

Re =
$$\frac{\mathbf{v} \cdot \mathbf{d}_i}{v}$$

Ist die Reynoldszahl (Re) kleiner als 2'320, dann befindet sich das fliessende Medium in laminarem Strömungszustand; ist sie grösser, in turbulentem Strömungszustand. Üblicherweise herrschen turbulente Strömungsverhältnisse vor, sodass nur dieser Bereich betrachtet wird. Innerhalb dieses turbulenten Zustandes sind 3 Bereiche zu unterscheiden:

Im hydraulisch glatten Bereich ist die Widerstandszahl lediglich eine Funktion der Reynoldszahl und unabhängig von der Rauigkeit der Rohrwandung.

Im hydraulisch rauhen Bereich ist die Widerstandszahl Lambda nur von der Wandrauigkeit abhängig. Im Bereich zwischen hydraulisch glatten und hydraulisch rauem Verhalten hängt die Widerstandszahl Lambda sowohl von der Reynoldszahl als auch von der relativen Rauigkeit ab.

Hier gilt das Übergangsgesetz von Prandtl-Colebrook, anwendbar als universelle Formel im turbulenten Bereich.

$$\frac{1}{\sqrt{\lambda}} = -2 \cdot log \left(\frac{kb}{3.71 \cdot d_i} + \frac{2.51 \cdot \upsilon}{d_i \cdot \sqrt{2 \cdot g \cdot d_i \cdot Je}} \right)$$

Beschreibung der Abkürzungen siehe nächste Seite.

Fliessformeln

Für die praktische Anwendung wird die Reibungsformel mit der Formel für die Verlusthöhe kombiniert. Dies ergibt die Geschwindigkeitsformel.

Fliessformel nach Prandtl-Colebrook

$$\text{IVI} = 2 \cdot \sqrt{2 \cdot g \cdot d_i} \cdot \text{Je} \cdot \text{log} \left(\frac{\text{kb}}{3.71 \cdot d_i} + \frac{2.51 \cdot \upsilon}{d_i \cdot \sqrt{2 \cdot g \cdot d_i} \cdot \text{Je}} \right)$$

Wobei:

٧	=	mittlere Fliessgeschwindigkeit	[m/s]
g	=	Erdbeschleunigung	9.81 [m/s ²]
Je	=	Energieliniengefälle	[-]
di	=	Rohrinnendurchmesser	[m]
kb	=	Rauigkeitswert	0.1 • 10 ⁻³ [m]
υ	=	kinematische Zähigkeit	1.31 • 10 ⁻⁶ [m ² /s]

Bei einer vorgewählten Geschwindigkeit lässt sich entsprechend das Energieliniengefälle Je berechnen. Je = 0.03 entspricht 3 m/100 m, entspricht 0.3 bar Druckverlust auf 100 m Leitungslänge.

Die Berechnungen basieren auf Annäherungen und Versuchen, die praxisnahe Ansätze beinhalten, und somit praxisnahe Lösungen bringen. Sie können aber nie exakte Resultate liefern. Dementsprechend sind die Resultate zu relativieren.

Die Durchflussleistung ergibt sich wie folgt:

Q =	V	•	Α
-----	---	---	---

Q	=	Wassermenge	[m ³ /s]
V	=	mittlere Geschwindigkeit	[m/s]
Α	=	Rohrinnenquerschnitt	[m²]

Die Bestimmung der Geschwindigkeit oder der Druckverlusthöhe bei gegebenem Durchflussvolumen lässt sich am besten anhand eines Nomogrammes herauslesen.

Randbedingungen

Als Richtgrössen für die Dimensionierung können folgende Werte verwendet werden:

- Die Fliessgeschwindigkeit sollte im Verteilnetz auf max. 1 m/s dimensioniert werden.
- Hauptleitungen werden auf max. 2 m/s dimensioniert.
- Die Minimalgeschwindigkeit sollte grösser als 0.03 m/s sein.

Materialkennwerte

Man unterscheidet zwischen der Materialrauigkeit, Wandrauigkeit und der betrieblichen Rauigkeit.

Materialrauigkeit

Kunststoff hat gemäss Angaben aus der Fachliteratur eine Materialrauigkeit von 0.007 mm. Diese Werte finden sich zum Teil auch in Normen und Tabellen.

Dieser Wert hat aber mit der praktischen Anwendung wenig zu tun.

Wandrauigkeit

Die Wandrauigkeit wirkt im Zusammenspiel mit verschiedenen Faktoren, wie z.B. Strömungsgeschwindigkeit und Strömungsart (laminar, turbulent), oder Temperatur und Viskosität des Medium (Wasser).

Da in der Praxis wechselnde Verhältnisse vorkommen, kann keine allgemein gültige Aussage gemacht werden. Zudem ist die Wandrauigkeit nur auf das Rohr bezogen und nicht auf ein System in Kombination mit Abgängen etc.

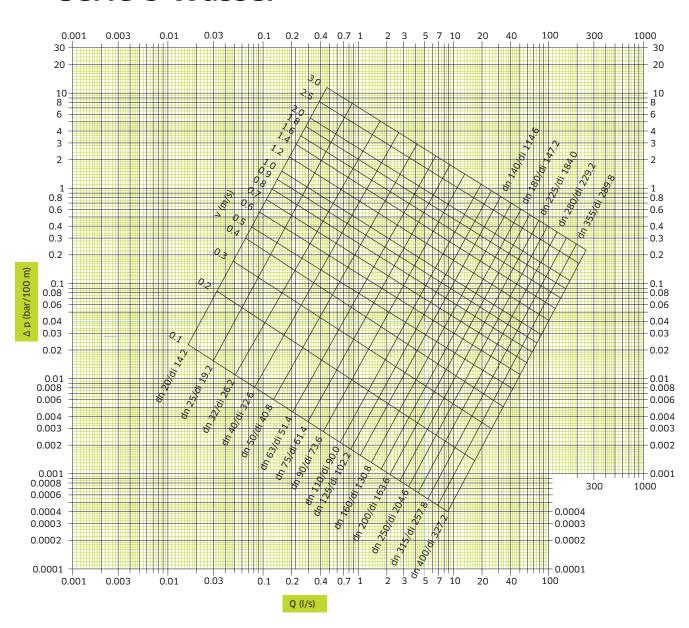
Betriebliche Rauigkeit

Untersuchungen haben gezeigt, dass der Einfluss der Wandrauigkeit auf den hydraulischen Transport in der Praxis oft eine untergeordnete Rolle spielt. Massgebend sind die Rohrverbindungen, Bögen, Einbauten und Abgänge.

Diese praktischen Einflüsse lassen sich aber schwer in eine rechnerische Grösse fassen.

Somit gibt es je nach Literatur und Untersuchungen eine breite Streuung der Rechenwerte.

Dementsprechend empfehlen wir folgende Werte:

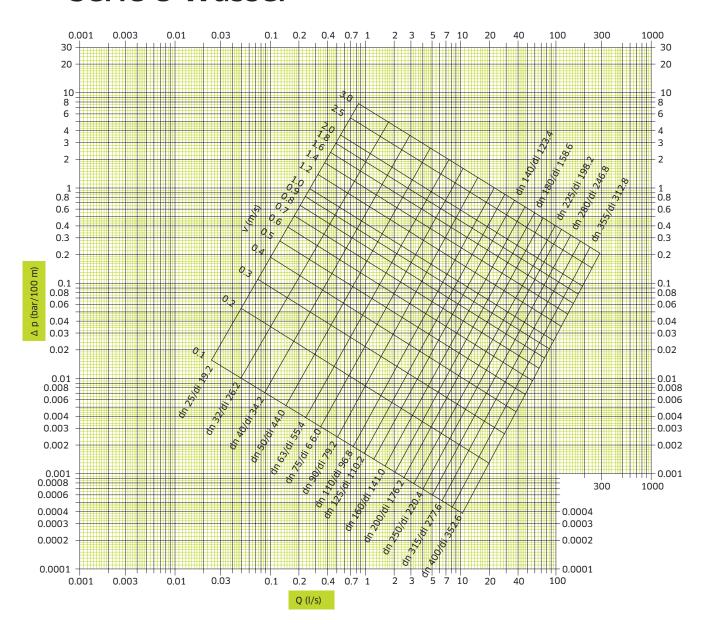

- Für Druckleitungen ohne Anschlüsse kb = 0.1 mm
- Druckleitungen mit seitlichen Anschlüssen kb = 0.5 mm

JANSEN Druckrohre Serie 5, SDR 11

Basis:

Fliessformel nach Prandtl-Colebrook Betriebliche Wandrauhigkeit kb = 0.1 mm

Serie 5 Wasser


Ein vergrössertes Nomogramm finden Sie im Kapitel Verlegetechnik

JANSEN Druckrohre Serie 8, SDR 17

Basis:

Fliessformel nach Prandtl-Colebrook Betriebliche Wandrauhigkeit kb = 0.1 mm

Serie 8 Wasser

Ein vergrössertes Nomogramm finden Sie im Kapitel Verlegetechnik

Dimensionierung Gasrohre

Druckstufen

Die zulässigen Innendruckbelastungen bei Gasleitungen (Erdgas) richten sich in erster Linie nach den Vorgaben des SVGW. Bei den heute verwendeten Rohrmaterialien spielt die Rohrserie eine untergeordnete Rolle.

Zulässiger Innendruck bei Gasleitungen

PE 100 Serie S 5 PN 5 bar PE 100 Serie S 8 PN 5 bar

Mit dem maximal zulässigen Druck von 5 bar wird der Gesamtbetriebskoeffizient (Sicherheitsfaktor) von mindestens 2 weit überschritten.

Berechnung der Druckverluste bei Gasleitungen

Gase sind kompressible Medien. Beim Durchströmen einer Rohrleitung erfolgt zusätzlich zum Einfluss der Geometrie der Rohrleitung (Länge, Innendurchmesser), der Rohrreibung und dem Volumenstrom, ein Druckabfall infolge Expansion, welcher massgeblich vom Niveau des Betriebsdruckes abhängt. Für Gasleitungen in Niederdrucknetzen mit einem Betriebsdruck bis 100 mbar kann die Druckverlustberechnung unter der Annahme «raumbeständige Fortleitung» aufgrund des betriebsmässigen Volumenstromes durchgeführt werden. Für höhere Gasdrücke kommt die Berechnungsart «raumveränderliche Fortleitung» zur Anwendung, wobei der auf Normzustand umgerechnete Volumenstrom massgebend ist.

Für die «raumbeständige Fortleitung» bei Niederdruck-Gasleitungen **A** (p ≤ 100 mbar) gilt:

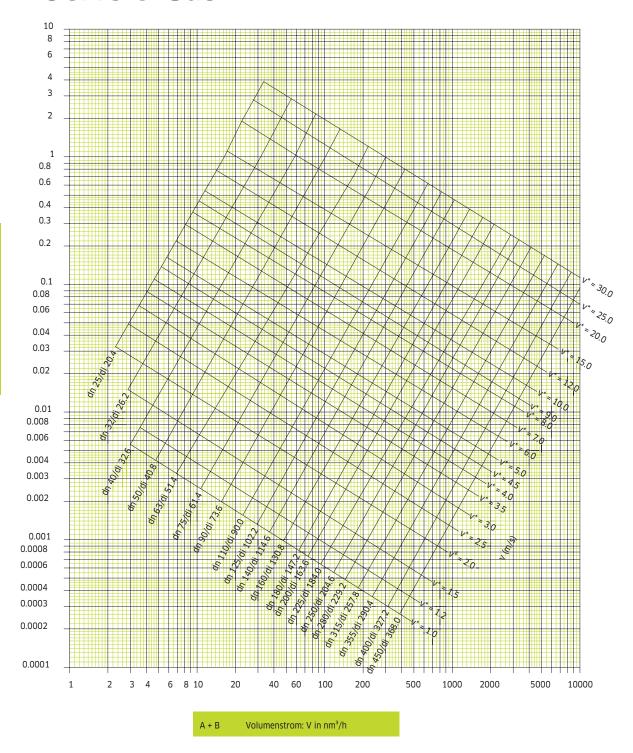
$$\frac{\Delta_{p}}{I} = \Delta^{*} \cdot a \cdot b \cdot c \qquad [bar/km]$$

$$V = V^* \cdot C$$
 [m/s]

Für die «raumveränderliche Fortleitung» bei expandierender Gasströmungen B (p > 100 mbar) gilt:

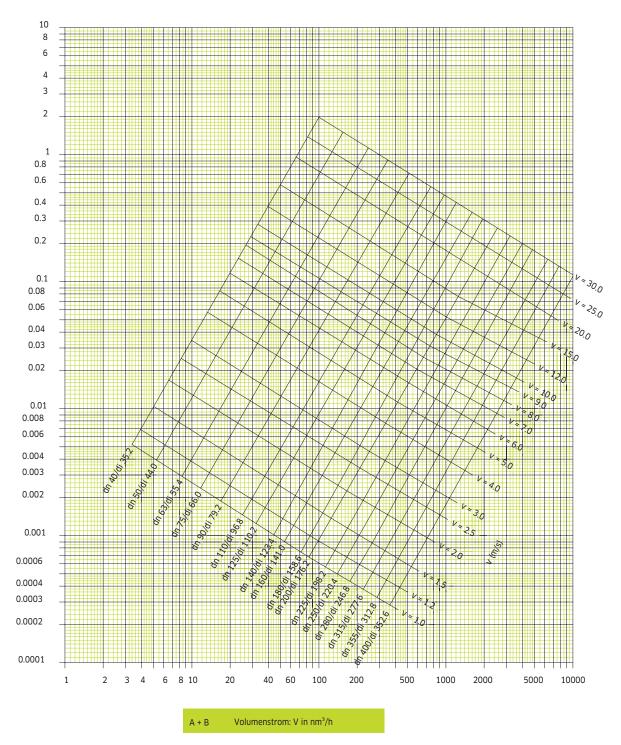
$$\frac{p_A^2 - p_E^2}{I} = 2 \cdot \Delta \cdot a \cdot b$$
 [bar2/km]

$$V = V^* \cdot \left(\frac{1}{p}\right)$$
 [m/s]


Berechnungsgrundlagen

Definitionen					
		Einheit			
a	Berichtigungsfaktor für Gasdichten gemäss Tabelle 1 (bezogen auf 0°C, 760 mm Hg)				
b					
С	Berichtigungsfaktor für Höhenlagen gemäss Tabelle 3				
d _n	Rohraussendurchmesser	mm			
Н	Höhenlage	m ü.M.			
L	Leitungslänge	km			
р	Absolutwert des Gasdruckes an beliebiger Stelle)	bar			
p _A	Absolutwert des Gasdruckes am Leitungsanfang	bar			
p _E	Absolutwert des Gasdruckes am Leitungsende	bar			
V*	Geschwindigkeits-Diagrammwert gemäss Nomogramm	m/s			
V	Transportvolumen bezogen auf 0°C, 760 mm Hg (Normkubikmeter/h)	nm³/h			
Δ_{p}	Druckverlust	bar			
Δ	Druckverlustdiagrammwert	bar²/km			
Δ*	Druckverlustdiagrammwert	bar/km			
ρ°	Gasdichte	kg/nm³			
V	Strömungsgeschwindigkeit	m/s			

Tabelle 1							
ρ° (kg/nm³)	0.60	0.65	0.70	0.75	0.80	0.85	0.90
a	0.80	0.85	0.90	0.95	1.00	1.05	1.10
Tabelle 2							
t (°C)	0	5	10	15	20	25	
b	0.96	0.98	1.00	1.02	1.04	1.06	
Tabelle 3							
H (m ü.M.)	0	250	500	750	1000	1250	
С	0.94	0.97	1.00	1.03	1.06	1.09	


JANSEN Gasrohr Serie 5, SDR 11

Serie 5 Gas

JANSEN Gasrohr Serie 8, SDR 17

Serie 8 Gas

. Druckverlust ∆* in mbar/m (bar/km) Druckverlust ∆in mbar/m (bar²/km)

Lösungsbeispiel

Gegeben:

Betriebsdruck (Überdruck) < 100 mbar 10° C Gastemperatur t 0.75 kg/nm^3 Gasdichte ρ° Leitungslänge 150 m Rohrdimension Serie 5 $d_n = 110 \text{ mm}$

Topographische Höhenlage 750 m ü. M.

Gesucht:

Welche Fördermenge V ist zu erwarten, wenn für den Druckverlust max. 2 mbar zur Verfügung stehen?

Lösung:

 $\Delta_{p} = 0.002$ Druckverlust Aus Tabelle 1 folgt a = 0.95Aus Tabelle 2 folgt b = 1.00c = 1.03Aus Tabelle 3 folgt

$$\Delta^* = \frac{\Delta_p}{L} \cdot \frac{1}{a} \cdot \frac{1}{b} \cdot \frac{1}{c}$$

$$\frac{0.002}{0.150} \cdot \frac{1}{0.95} \cdot \frac{1}{1} \cdot \frac{1}{1.03} = 0.014 \text{ bar/km}$$

Aus dem Berechnungsdiagramm resultiert für d_n 110 mm bei Δ^* = 0.014 bar/km

 $V = 79 \text{ nm}^3/\text{h} \text{ und } V^* = 3.5 \text{ m/s}$ V = V* • C $v = 3.5 \cdot 1.03 = 3.6 \,\text{m/s}$

Die maximale Förderleistung beträgt 79 nm³/h bei einer mittleren Strömungsgeschwindigkeit von 3.6 m/s

Jansen AG

Plastic Solutions Industriestrasse 34 9463 Oberriet

> Schweiz ansen com

